Golder Associates Ltd.

1796 Courtwood Crescent Ottawa, Ontario, Canada K2C 2B5 Telephone (613) 224-5864 Fax (613) 224-9928

REPORT ON

2000 HYDROGEOLOGICAL INVESTIGATION AND GROUNDWATER AND SURFACE WATER MONITORING PROGRAM LIMOGES LANDFILL SITE CORPORATION OF THE NATION MUNICIPALITY, ONTARIO

Submitted to:

Corporation of the Nation Municipality
958 Road 500 West
R.R. 3
Casselman, Ontario
K0A 1M0

DISTRIBUTION:

7 copies - Corporation of the Nation Municipality

1 copy - Stantec Consulting Ltd.

2 copies - Golder Associates

April 2001

001-2782

Golder Associates Ltd.

1796 Courtwood Crescent Ottawa, Ontario, Canada K2C 2B5 Telephone (613) 224-5864 Fax (613) 224-9928

April 3, 2001

001-2782

Corporation of the Nation Municipality 958 Road 500 West R.R. 3 Casselman, Ontario K0A 1M0

Attention: Mrs. Mary McCuaig, A.M.C.T.

RE: 2000 HYDROGEOLOGICAL INVESTIGATION AND GROUNDWATER AND

SURFACE WATER MONITORING PROGRAM

LIMOGES LANDFILL SITE

CORPORATION OF THE NATION MUNICIPALITY, ONTARIO

Dear Madam:

Golder Associates Ltd. is pleased to present seven copies of our report on the 2000 Hydrogeological Investigation and Groundwater and Surface Water Monitoring Program at the Limoges Landfill Site. We have appreciated the opportunity to work with you on this project.

Should you have any questions or comments on the report, or if we may be of further assistance, please do not hesitate to contact the undersigned.

Yours truly,

GOLDER ASSOCIATES LTD.

Environmental Division

P.L. Edmond, P.Eng.

Geo-environmental Engineer

Patricia Edmond.

K.A. Marentette, M.Sc.

Senior Hydrogeologist/Associate

PLE:KAM:cr

 $n:\label{lem:norm} n:\label{lem:norm} n:\label{le$

EXECUTIVE SUMMARY

This report summarizes the results of the 2000 groundwater and surface water monitoring program carried out at the Limoges Landfill Site. The landfill site is located east of Regional Road 5, between Concession Road 3 and the Canadian National Railway Line, on Part of Lot 29, Concession III, in the former Township of Cambridge in the Nation Municipality, Ontario.

Field investigation activities included the drilling of one borehole to characterize background water quality, water level measurements, sampling of groundwater monitors, and sampling of surface water locations during sampling sessions in July/August, October and December 2000.

Based on the borehole data, the overburden consists of silty clay overlain by sandy silt, sand, and topsoil in some areas. The direction of groundwater flow in the surficial granular layer at the site is interpreted to be in a north/northeasterly direction towards the South Indian Creek. The average linear groundwater velocity (seepage velocity) between boreholes P5 and P4 is estimated to be about 1 to 1.5 metres per year in the granular layer.

Based on an interpretation of the existing groundwater quality data and the site compliance assessment under MOE Guideline B-7 (the "Reasonable Use Concept"), it is concluded that the landfill site is likely in a state of compliance in terms of impact on off-site groundwater resources.

The impact of landfill leachate on the surface water quality in the South Indian Creek to the northeast of the fill area is not resulting in an increase in the level of any analytical parameter beyond the specified PWQO or in the violation of Policy 2 and, as such, the site is in compliance with MOEE Policy 2 along the northeast property boundary.

A site-specific surface water trigger mechanism in accordance with Section 4.1 of a Compliance Inspection Report dated February 23, 2000 was prepared and is presented in Section 10.0 of this report. In addition, a groundwater trigger mechanism was also prepared for the site and is discussed in the same section of the report.

Groundwater and surface water monitoring programs should be continued in order to evaluate site compliance on an ongoing basis and a proposed groundwater and surface water monitoring program for 2001 is presented in Section 10.4 of this report.

TABLE OF CONTENTS

Exec	cutive Summary	i				
Tabl	le of Contents	ii				
SEC	CTION	PAGE				
1.0	INTRODUCTION	1				
2.0	PROJECT OBJECTIVES	2				
3.0	INVESTIGATION AND MONITORING PROCEDURES					
	3.2 Groundwater Monitoring Session	5				
4.0	GEOLOGICAL CONDITIONS	8 8				
5.0	PHYSICAL HYDROGEOLOGY 5.1 Water Level Data 5.2 Hydraulic Gradients 5.2.1 Horizontal Component 5.2.2 Vertical Component 5.3 Groundwater Flow Direction 5.4 Horizontal Hydraulic Conductivity 5.5 Groundwater Flux 5.6 Average Linear Groundwater Velocity					
6.0	GROUNDWATER QUALITY					
7.0	GROUNDWATER COMPLIANCE ASSESSMENT	16				
8.0	SURFACE WATER QUALITY	18				

TABLE OF CONTENTS (cont'd)

		8.2.1	Drainage Ditch	18
		8.2.2	South Indian Creek	19
9.0	SUF	RFACE	WATER COMPLIANCE ASSESSMENT	20
10.0	SITE	E-SPE	CIFIC MONITORING PROGRAM AND	
	TRIC	GGER	MECHANISMS	21
	10.1	Pream	ıble	21
	10.2	Key In	dicator Parameters	21
	10.3	Survei	llance Parameters	22
	10.4	Propos	sed 2001 Monitoring Program	23
		10.4.1	Objectives	23
		10.4.2	Groundwater Component	24
		10.4.3	Surface Water Component	25
		10.4.4	Reporting	26
	10.5	Object	tives and Introduction of Trigger Mechanisms	26
	10.6	Comp	liance Evaluation Parameters and Trigger Concentrations	26
			Preamble	
			Groundwater	
			Surface Water	
	10.7		r Formats	
			Groundwater Trigger	
			Surface Water Trigger	
	10.8		r Locations	
			West and South Boundaries	
			North Boundary	
			East Boundary	
	10.9	Modifi	cation to Trigger Mechanisms	31
11.0	LIMI	TATIO	NS AND USE OF REPORT	32
REE	FRE	NCES		34

In Order Following Page 34

TABLE OF CONTENTS (cont'd)

LIST OF TABLES

- TABLE 1 Interpretation of 2000 Inorganic Groundwater Quality Data Impact Evaluation Monitoring Wells
- TABLE 2 Summary of Volatile Organic Compounds Detected in Water Samples, Fall 2000
- TABLE 3 Summary of Parameters Exceeding Reasonable Use Performance Objectives Based on Background Conditions at Monitoring Location G10-00
- TABLE 4 Interpretation of 2000 Surface Water Quality Data
- TABLE 5 Proposed 2001 Groundwater Monitoring Program
- TABLE 6 Proposed 2001 Surface Water Monitoring Program

LIST OF FIGURES

FIGURE 1 - Key Plan

FIGURE 2 - Site Plan

LIST OF APPENDICES

APPENDIX A - Record of Borehole Sheets

APPENDIX B - Report of Analyses, Accutest Laboratories Ltd.

Appendix B-I - Summer Monitoring Session

Appendix B-II - Fall Monitoring Session

Appendix B-III - Winter Monitoring Session

APPENDIX C - Results of Field and Laboratory Chemical and Physical Analyses

1.0 INTRODUCTION

This report summarizes the 2000 hydrogeological investigation and groundwater and surface water monitoring program, carried out at the Limoges Landfill Site in the Nation Municipality, Ontario. The scope of work was originally described in the Golder Associates letter dated May 10, 2000 and was further revised in a letter dated July 25, 2000.

The site is located east of Regional Road 5, between Concession Road 3 and the Canadian National Railway Line, on Part of Lot 29, Concession III, in the former Township of Cambridge in the Nation Municipality (Key Plan, Figure 1), Ontario. Highway 417 is located approximately 500 metres south of the site. The site is accessible via Concession Road 3. The landfill is located in a rural setting approximately one kilometre southeast of the Village of Limoges. The site, which is owned and operated by the Corporation of the Nation Municipality, comprises an area of 15 hectares and currently operates under Provisional Certificate of Approval A471104, dated June 24, 1980. The landfill, which is licensed for the disposal of "domestic, commercial, and non-hazardous solid industrial wastes", currently occupies approximately 6.5 hectares of the approved 14.75 hectare approved fill area. The landfill, located in a former sand pit extraction operation, has accepted only 'dry' wastes since 1995 (Beatty Franz and Associates Ltd., 1998). The disposal area is located in the northeast section of the site and is bounded by a drainage ditch and wooded area to the north, a ravine and South Indian Creek to the east, and wooded areas to the south and west as shown on the Site Plan (Figure 2).

Surface water follows the site topography, flowing into the South Indian Creek immediately east of the landfill. Water from the drainage ditch to the north of the property flows east into the South Indian Creek, which flows northwards and ultimately discharges into the South Nation River. The nearest point of the Nation River is located about five kilometres east of the site.

Previous site investigations were performed by McNeely Engineering Consultants Ltd. (McNeely), StanCon Groundwater Engineering Ltd. (Stancon), Beatty Franz and Associates Ltd. (Beatty Franz) and Golder Associates Ltd. as summarized below:

Date	Consultant Involved	Investigation
1992	McNeely Engineering Consultants Ltd.	Site Development and Operations Plan
1992	StanCon Groundwater Engineering Ltd.	Hydrogeological Study: Overburden boreholes P2, P3, P4, P5, P6, P7 drilled; each completed with two monitoring wells; groundwater and surface water sampling
1998	Beatty Franz and Associates Ltd.	Hydrogeological Assessment: Overburden boreholes P8, P9 drilled; completed with one and two monitoring wells, respectively; groundwater and surface water sampling
1999	Golder Associates Ltd.	Groundwater and Surface Water Monitoring

2.0 PROJECT OBJECTIVES

The objectives of the 2000 hydrogeological investigation and monitoring program (as described in the Golder Associates letter dated July 25, 2000) are summarized as follows:

- Characterization of the background water quality in the silty clay by drilling one borehole located approximately 50 metres south/southwest of current borehole P5. This borehole should contain at least one piezometer screened in the silty clay deposit and one in the granular deposit and should be installed prior to any groundwater monitoring;
- Preparation of a site-specific surface water trigger mechanism as requested in the Ministry of Environment (MOE) Compliance Inspection Report dated February 23, 2000;
- Measurement of groundwater levels in October 2000;
- Collection of groundwater samples from all monitoring wells in October 2000;
- Collection of samples from surface water monitoring locations in July/August, October and December 2000; and
- Preparation of an annual monitoring report based on field and laboratory results.

The original scope of work proposed in the May 10, 2000 letter included the sampling of groundwater and surface water in April/May 2000. The scope of work was revised as outlined in the letter dated July 25, 2000 due to a delay in the authorization to proceed with the work plan.

3.0 INVESTIGATION AND MONITORING PROCEDURES

The various hydrogeological activities undertaken during 2000 are discussed in this section.

The locations of the monitoring wells and surface water sampling stations in the vicinity of the landfill site are shown on Figure 2.

3.1 Hydrogeological Investigation

The borehole drilling and monitoring well installation program was conducted on August 24, 2000 for the purpose of characterizing the background groundwater quality in the silty clay.

During the 2000 borehole drilling and monitoring well installation program, three monitoring wells were installed at one borehole location. The borehole is labeled G10-00 and its location is shown on Figure 2.

The borehole was drilled using a CME55 track mounted 200 millimetre outside diameter hollow stem auger/rotary drill rig supplied and operated by Marathon Drilling Co. of Gloucester, Ontario. All drilling activities were monitored in the field by a member of Golder Associates field technical staff.

The borehole was advanced to a depth of 10.7 metres below ground surface. Borehole G10-00 was completed in the overburden. Overburden samples were collected using a 50 millimetre diameter split spoon sampler in conjunction with performing the standard penetration test. The overburden lithology was logged by the Golder Associates technician at the drill rig during advancement of the augers. The soil samples recovered from the boreholes during the drilling program were visually described in the field and returned to the Golder Associates Ottawa Laboratory for further examination and classification.

After the completion of drilling, a deep monitoring well was installed at the bottom of the borehole within the silty clay deposit. Two more shallow monitoring wells were installed in an adjacent unsampled boring within the silty sand and sand unit, respectively.

The convention adopted in this report is that the deeper monitoring well at each borehole location is designated as monitoring well "1" and the shallower well at the same borehole location is referred to as monitoring well "2", and so on.

The monitoring wells were installed in the borehole to allow subsequent measurement of groundwater levels and groundwater sampling. All newly installed monitoring wells consist of a schedule 40 38- millimetre diameter, flush threaded, PVC riser pipe with a 1.5 metre length of #10 slot PVC screen at the bottom of the well. Filter sand or native backfill is present below,

around and above the screened intervals in the monitoring wells. Bentonite seals were placed at various locations in the boreholes to provide seals to prevent vertical migration of groundwater along the well bore and/or surface water intrusion.

All of the monitoring wells constructed during the borehole drilling and monitoring well installation program were provided with dedicated sampling devices consisting of a length of flexible low density polyethylene (LDPE) tubing and a Model D-25 foot valve manufactured by Waterra Pumps Ltd. of Toronto, Ontario.

Appendix A contains the Record of Borehole Sheets for the 2000 borehole as well as the boreholes previously drilled at the site. The ground surface and top of casing elevations at the 2000 borehole location was surveyed by Golder Associates relative to an existing monitoring well (geodetic elevation). A summary of the elevation data for all of the existing monitoring wells is presented in the following table.

Monitoring Well	Ground Surface Elevation (m)	Top of Casing Elevation (m)
P2-1	66.43	67.24
P2-2	66.43	66.94
P3-1	69.80	70.41
P3-2	69.80	70.04
P4-1	69.54	70.47
P4-2	69.54	70.18
P5-1	69.50	70.33*
P5-2	69.50	70.01*
P6-1	69.81	70.71
P6-2	69.81	70.47
P7-1	68.39	69.00
P7-2	68.39	68.84
P8-1	unknown	69.54
P8-2	unknown	69.55
P9-1	unknown	70.45
G10-1	69.87	70.61**
G10-2	69.87	70.64**
G10-3	69.87	70.66**

Notes:

Top of casing elevations surveyed in 1998 by Beatty Franz and Associates Ltd.

- * Top of casing elevations resurveyed in November 1999 by Stantec Consulting Ltd. due to broken piezometers
- ** Top of casing elevations surveyed in September 2000 by Golder Associates Ltd.

3.2 Groundwater Monitoring Session

The groundwater monitoring and sampling program was carried out at the Limoges Landfill Site in one session during November 2000 (fall session).

Prior to the sampling session, the depth to groundwater was measured in each monitoring well. These depths are recorded in Section 5.1. During the sampling session, groundwater samples were collected from pre-existing monitoring wells P2-1, P2-2, P3-1, P3-2, P4-1, P4-2, P5-1, P5-2, P6-1, P6-2, P7-1, P7-2, P8-1, P8-2 and P9-1 and newly installed monitoring wells G10-1, G10-2 and G10-3. Monitoring wells were developed by the removal of at least three standing volumes of water using dedicated samplers. Sampling of groundwater was performed immediately after well development. Groundwater samples could not be collected from P3-1 and P3-2 as they were found to be dry or contained an insufficient amount of water.

One field blank was prepared as part of the Quality Assurance/Quality Control (QA/QC) program during the fall sampling session.

The temperature, pH and conductivity of the groundwater samples were measured in the field at the time of sample collection. The field conductivity measurements were obtained using a conductivity meter that was calibrated in the field prior to use. All samples were entered on a Chain of Custody form and placed in coolers with ice packs until they were delivered in person to the private analytical laboratory.

The groundwater samples collected for the specific analyses were collected, prepared and preserved in the field using the following protocols:

Analytical Parameters	Preparation and Preservation Protocols
Hardness (calcium and magnesium) sodium, potassium, aluminum, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, silicon, silver, strontium, sulphur, thallium, tin, titanium, vanadium, zinc and total phosphorus	plastic bottle, field filtered to 0.45 microns and preserved to pH<2 with nitric acid
Total dissolved solids, alkalinity, sulphate, nitrate, nitrite, phosphate, chloride	plastic bottle, unfiltered and unpreserved
Phenols	amber glass bottle with foil lined cap, unfiltered and preserved to pH<4 with sulphuric acid
Volatile organic compounds by US EPA Method 624	40 millilitre amber glass vial with teflon septum, unfiltered and unpreserved with no headspace
Chemical oxygen demand, dissolved organic carbon, ammonia	plastic bottle, unfiltered and preserved to pH<2 with sulphuric acid

All laboratory chemical and physical analyses on groundwater samples were performed by Accutest Laboratories Ltd. in Nepean, Ontario. The Report of Analyses sheets from Accutest Laboratories Ltd. for the fall monitoring session are provided in Appendix B-II.

3.3 Surface Water Monitoring Sessions

The surface water monitoring and sampling program was carried out at the Limoges Landfill Site in three sessions: August 2000 (summer session), November 2000 (fall session) and December 2000 (winter session).

Surface water samples were collected from surface water monitoring locations SW1, SW2, SW3, SW4, SW5, SW6, SW7, as located on Figure 2. Surface water sampling stations SW1, SW2 and SW3 are along the South Indian Creek; stations SW4, SW5 and SW6 are associated with the north ditch; and SW7 is a groundwater seep along the bank of the South Indian Creek. Surface water was only collected from SW3 during the winter sampling session as all other sampling locations were found to be frozen.

One field blank was prepared as part of the Quality Assurance/Quality Control (QA/QC) program during the summer sampling session.

The temperature, pH, conductivity and dissolved oxygen of the surface water samples were measured in the field at the time of sample collection. The field conductivity measurements were obtained using a conductivity meter that was calibrated in the field prior to use. The field dissolved oxygen measurements were obtained using a YSI Model 51B Dissolved Oxygen Meter, which was calibrated in the field prior to use. All samples were entered on a Chain of Custody form and placed in coolers with ice packs until they were delivered in person to the private analytical laboratory.

The surface water samples collected for the specific analyses were collected, prepared and preserved in the field using the following protocols:

Analytical Parameters	Preparation and Preservation Protocols
Hardness (calcium and magnesium), sodium, potassium, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, silicon, silver, strontium, sulphur, thallium, tin, titanium, vanadium, zinc and total phosphorus	plastic bottle, unfiltered and preserved to pH<2 with nitric acid
Aluminum	plastic bottle, field filtered to 0.45 microns and preserved to pH<2 with nitric acid
Phenois	amber glass bottle with foil lined cap, unfiltered and preserved to pH<4 with sulphuric acid
Volatile organic compounds by US EPA Method 624	40 millilitre amber glass vial with teflon septum, unfiltered and unpreserved with no headspace
Total dissolved solids, alkalinity, sulphate, nitrate, nitrite, chloride and phosphate	plastic bottle, unfiltered and unpreserved
Chemical oxygen demand, dissolved organic carbon and ammonia	plastic bottle, unfiltered and preserved to pH<2 with sulphuric acid

All laboratory chemical and physical analyses on surface water samples were performed by Accutest Laboratories Ltd. in Nepean, Ontario. The Report of Analyses sheets from Accutest Laboratories Ltd. for all sampling sessions are provided in Appendix B-I, B-II and B-III for the summer, fall and winter sessions, respectively.

4.0 GEOLOGICAL CONDITIONS

One borehole was drilled during the 2000 investigation in addition to the eight boreholes drilled by other consultants during previous investigations at the Limoges Landfill Site. The logs detailing the geological conditions encountered in each borehole augered during the previous and 2000 investigation programs are given on the Record of Borehole Sheets in Appendix A.

It must be noted that the boundaries between strata on the Record of Borehole Sheets have been inferred from observations during drilling and non-continuous sampling and, as such, their positions should be considered as transitional in nature rather than an exact plane of geological change. Natural variations other than those encountered in the boreholes should also be expected to exist.

In general, the geological conditions encountered in the borehole drilled during 2000 are consistent with that reported in the 1991 and 1997 series of boreholes drilled by other consultants.

4.1 Fill Materials

Fill materials were not encountered at any of the boreholes, although 'some rubble' was encountered in borehole P8 in the first 0.3 metres of sand below ground surface. None of the boreholes are drilled within the waste footprint.

4.2 Native Overburden Deposits

Overburden deposits native to the site occur at all boreholes and are fairly consistent throughout the site. Organic topsoil was encountered at boreholes P6, P9 and G10-00 with an average thickness of 0.18 metres. An upper sand layer of varying thickness was encountered at all borehole locations. A layer of grey sandy silt was encountered at boreholes P2, P3, P4, P5, P6 and P7 with an average thickness of 4.5 metres. Silty sand underlain by silt was encountered at P8. In boreholes P9 and G10-00, the near surface was underlain by silty sand. Grey silty clay was encountered in all boreholes below the sand, sandy silt/silty sand at an average depth of 7.4 metres below ground surface. The thickness of the sand, sandy silt/silty sand over the silty clay ranges from about 5.5 metres at boreholes P2 and P8 to over 8 metres at boreholes P3, P7 and P9.

In the report, the sand, sandy silt/silty sand layers will be called the granular deposit and the silty clay deposit beneath it will be referred to as the silty clay deposit.

Ministry of Environment (MOE) water well records for nearby domestic wells indicate that clay or silty clay extends to a depth of about 30 to 50 metres below ground surface (Beatty Franz, 1998).

Regional surficial geological maps indicate that the near surface silty sand loam is a Champlain Sea deposit. The silty sands are deltaic or estuarine deposits developed as the water level of the Champlain Sea dropped forming residual lakes and streams.

4.3 Bedrock

Boreholes were terminated in the overburden at a maximum depth of 10.7 metres below ground surface. Bedrock was not encountered at any of the borehole locations.

MOE water well records for nearby domestic wells indicate the depth to bedrock in this region is between 30 and 50 metres below ground surface (Beatty Franz, 1998).

Regional geological maps indicate that the site is underlain by shale of the Carlsbad Formation.

5.1 Water Level Data

The following table presents the groundwater elevation data collected between the fall of 1991 and November 2000.

- 10 -

			GROUNI	WATER ELEVA	TION (M)		
Monitoring Well	Oct./Nov. 1991	Dec. 3 1997	Apr. 21 1998	May 14 1999	Sep. 1 1999	Oct. 19 1999	Nov. 1 2000
P2-1	65.47	65.49	65.57	65.45	65.11	65.31	65.19
P2-2	65.51	65.50	65.59	65.52	65.14	65.78	65.24
P3-1	64.16			65.31	64.70	64.69	64.87
P3-2	64.33	64.38	65.07	dry	dry	dry	dry
P4-1	65.04	65.08	66.04	65.76	65.15	65.06	65.28
P4-2	65.05	65.11	66.11	65.82	65.19	65.09	65.32
P5-1	67.23	67.60	68.69			67.68	67.77
P5-2	67.21	67.57				67.65	67.76
P6-1	66.80	67.23	68.73	68.56	67.16	67.27	67.49
P6-2	66.80	67.19	68.73	68.58	67.17	67.26	67.49
P7-1	64.76	65.05	65.60	65.56	64.90	64.90	65.06
P7-2	66.80	64.87	65.58	65.48	64.82	64.80	64.97
P8-1	NI	65.80	66.00	66.05	65.38	65.30	65.54
P8-2	NI	65.72	66.58	66.46	65.69	65.70	65.91
P9-1	NI	64.54	65.00	64.95	64.95	64.45	64.57
G10-1	NI	NI	NI	NI	NI	NI	68.16
G10-2	NI	NI	NI	NI	NI	NI	68.20
G10-3	NI	NI	NI	NI	NI	NI	68.21

NOTES:

NI = Monitoring well not installed at time of monitoring session

"---" = No data available

5.2 Hydraulic Gradients

5.2.1 Horizontal Component

The horizontal hydraulic gradients for the granular deposit flow system at the site were estimated from the 2000 groundwater elevation data. The horizontal hydraulic gradient in the granular deposit groundwater flow system between boreholes P5 and P4 in a direction roughly parallel to the interpreted direction of groundwater flow (see Section 5.3) is estimated to be 0.017 metres per metre. This value is similar to that reported in Golder Associates (2000).

5.2.2 Vertical Component

Based on the groundwater elevation data from the monitoring wells in boreholes P2, P3, P4, P5, P6, P7, P8 and G10-00 the vertical hydraulic gradient at the site can be estimated.

At boreholes P2, P4, P8 and G10-00 recharge conditions dominate between the shallow and deep overburden monitoring wells. At borehole P7 discharge conditions dominate. Minor or no vertical gradients were observed at the remaining monitoring locations indicating that groundwater flow is essentially horizontal. Historically, vertical gradients at many of the monitors at this site have been variable.

5.3 Groundwater Flow Direction

The direction of flow within the granular deposit at the site was interpreted from the 2000 groundwater elevation data. Based on the groundwater elevations in the shallow monitoring wells, the interpreted direction of horizontal groundwater flow at the site is towards the north/northeast as illustrated on Figure 2. These findings are consistent with past hydrogeological investigations.

5.4 Horizontal Hydraulic Conductivity

Horizontal hydraulic conductivities were estimated by StanCon in 1992 based on grain size distributions of the sandy silt at borehole P2 and P5, and slug tests performed at each monitoring well. The geometric mean horizontal hydraulic conductivities (K) have been estimated considering slug test results from monitoring wells P2-1 through P7-1 and P2-2 through P7-2 representing the lower and upper parts of the granular deposit, respectively:

lower:

 $K = 6.9 \times 10^{-5}$ centimetres per second

upper:

 $K = 9.0 \times 10^{-5}$ centimetres per second

These values are considered representative of what would be expected for the sand and sandy silt/silty sand overburden which comprise the granular deposit in the area of the site.

5.5 Groundwater Flux

Groundwater flux or specific discharge, q, is the discharge of groundwater per unit area per unit time and is calculated from Darcy's equation. Because the groundwater flux has the dimensions of a velocity, it is sometimes known as the Darcy velocity or Darcy flux (Hubbert, 1940; Freeze and Cherry, 1979). The Darcy flux is calculated from the equation:

where

 v_s = groundwater flux in units of length per time

K = horizontal hydraulic conductivity in units of length per time
 i = dimensionless horizontal hydraulic gradient in direction of v_s

Using a horizontal hydraulic gradient of 0.017 between boreholes P5 and P4 and a range of horizontal hydraulic conductivity for the granular deposit of 6.9×10^{-5} to 9.0×10^{-5} centimetres per second, the corresponding Darcy flux within the overburden is calculated to be 1.2×10^{-6} to 1.5×10^{-6} centimetres per second.

5.6 Average Linear Groundwater Velocity

The average linear groundwater velocity (seepage velocity), ν , is directly proportional to the groundwater flux and inversely proportional to formation porosity. The average linear groundwater velocity is calculated using the equation:

$$\overline{v} = \frac{Ki}{n}$$

where

v = average linear groundwater velocity in units of length per time

n = dimensionless formation porosity

K = horizontal hydraulic conductivity in units of length per time i = dimensionless horizontal hydraulic gradient in direction of v

For unconsolidated deposits such as silts and sands, typical porosity values can range from 25 to 50 percent (Freeze and Cherry, 1979). An average porosity of 35 percent for the granular deposit is assumed for the determination of average linear groundwater velocities in the vicinity of the landfill site.

The average linear groundwater velocity within the granular deposit between boreholes P5 and P4 is estimated to be 1 to 1.5 metres per year. This velocity is similar to that presented in Golder Associates (2000).

6.0 GROUNDWATER QUALITY

The groundwater quality in the vicinity of the Limoges Landfill Site was assessed by collecting samples from the existing monitoring wells and submitting them for chemical and physical analyses. The results of the field and laboratory chemical and physical analyses conducted during the 2000 monitoring program are presented in Appendix C along with relevant Ontario Drinking Water Standards/Objectives (MOE, 2000) and the data from previous monitoring sessions.

Historical groundwater chemical data exists from sampling sessions in 1991, 1997, 1998 and 1999. Concentrations of metals from the 1991 sampling session are not comparable to more recent data due to different filtering and sample preservation methods.

Discussions relating to compliance with the Ontario Drinking Water Standards/Objectives (ODWS/O) relate specifically to non-health related objectives (i.e., aesthetic parameters) and health-related parameters for which a Maximum Acceptable Concentration (MAC) or Interim Maximum Acceptable Concentration (IMAC) have been established.

6.1 Chemical and Physical (Inorganic) Analyses

6.1.1 Natural Background Inorganic Groundwater Quality

Historically for the purpose of this site assessment, background conditions were assumed to be represented by data collected from monitoring wells P6-1 and P6-2, located upgradient of and distant from the active landfill. These monitoring wells, both effectively screened in the granular deposit, were presumed to be unaffected by landfill leachate and were used to represent background conditions in the overburden.

Groundwater quality at monitoring well P6-1 is characterized by elevated concentrations of manganese (consistently exceeding the ODWO/S) and iron (occasionally exceeding the ODWO/S); slightly elevated concentrations of TDS and chloride; and low or non-detect concentrations of boron and nitrate. Existing chloride and TDS concentrations are likely the result of road salting on the access road or Concession Road 3 or possibly due to the screen being partially within the silty clay deposit.

Groundwater quality at monitoring well P6-2 is characterized by slightly elevated concentrations of chloride; and low or non-detect concentrations of nitrate, manganese and boron.

The groundwater quality in monitoring wells P6-1 and P6-2 is generally consistent over time with the exception that TDS levels are declining in monitoring P6-2.

In 2000, several new background monitoring wells were installed in the location of borehole G10-00. As previously discussed, the monitoring wells were screened in the silty clay, silty sand and sand deposits and were identified as G10-1, G10-2 and G10-3 respectively. The most significant difference between the monitors screened within the granular deposit at G10-00 and P6-1 and P6-2 was that chloride and TDS concentrations were lower within the new background monitors. This substantiated that the elevated levels of these parameters at P6-1 and P6-2 were from road salting activities. As such, it has been decided that P6-1 and P6-2 will no longer represent background groundwater quality for the site. Instead G10-2 and G10-3 will represent background groundwater quality within the granular deposit and G10-1 will represent background groundwater quality clay deposit.

The fall sampling session represents the first and only time the new background groundwater monitors have been sampled. Groundwater quality within G10-2 and G10-3 is characterized by elevated concentrations of iron (exceeding the ODWO/S) and manganese (exceeding ODWO/S only at G10-2). The groundwater quality at G10-1 is characterized by elevated concentrations of iron and manganese exceeding the ODWO/S; and slightly elevated chloride and TDS concentrations when compared to groundwater quality in monitoring wells G10-2 and G10-3. These elevated chloride and TDS concentrations are not as high as previously seen at P6-1 and P6-2 and are likely the influence of the native silty clay deposit in which the monitor is screened.

6.1.2 Impact Evaluation Monitoring Wells

The physical and chemical parameters with reported levels exceeding their respective ODWS/O; trends in groundwater quality (where applicable); a comparison of the groundwater quality to background conditions and, a hydrogeological interpretation of the groundwater quality data from the impact evaluation monitors are summarized in Table 1.

6.1.3 Interpreted Extent of Inorganic Groundwater Plume

Based on a review of the inorganic groundwater quality data, several parameters were identified as being useful groundwater quality indicator parameters with respect to the various anthropogenic (man-made) sources of contamination in the area of the landfill site. With respect to impact from the application of road de-icing agents on the access road or Concession Road 3, chloride is the most useful groundwater quality indicator parameters. With respect to impact from the landfill site, chloride, boron, DOC, sulphate, strontium and TDS appear to be the most useful groundwater quality indicator parameters. Therefore, the concentrations of these indicator parameters in groundwater along with the physical hydrogeological setting of the study area were used during the interpretation of the 2000 inorganic groundwater quality data.

Based on the analyses presented in Table 1, groundwater quality in monitors P5-1, P5-2, P6-1, P6-2, P7-2 and P9-1 are interpreted to not be impacted by landfill leachate. Groundwater quality in monitoring wells P4-1, P4-2 and P8-2 are interpreted to be impacted by landfill leachate. Groundwater quality at monitoring wells P2-1, P2-2, P7-1 and P8-1 are interpreted to exhibit a minor impact from landfill leachate.

6.2 Analyses of Volatile Organic Compounds

A summary of the volatile organic compounds (VOCs) detected in groundwater and surface water samples analyzed to date are presented in Table 2.

6.2.1 Natural Background Organic Groundwater Quality

It is not expected that the application of road de-icing agents along the access road would result in the presence of VOCs in groundwater. As such, the only sources of VOCs in the study area are inferred to be the waste disposal site. Therefore, for the purpose of defining background groundwater quality for VOCs, the 2000 data available from monitoring wells G10-1, G10-2 and G10-3 are used. Chloroform was detected at low concentrations in all three of these monitoring wells and tetrachloroethylene was also detected in one of the monitoring wells. The tetrachloroethylene concentration was at the laboratory method detection limit for this parameter.

6.2.2 Impact Evaluation Monitoring Wells

As noted in Section 3.0 volatile organic compounds (VOCs) were analyzed during 2000 in groundwater samples collected from impact evaluation monitoring wells P4-1 and P4-2.

None of the parameters (i.e., chloroform and tetrachloroethylene) detected in the background samples were detected in samples obtained from P4-1 or P4-2. Only benzene and cis-1,2-Dichloroethylene was detected in a sample from monitor P4-1. Of the VOCs detected in samples from impact evaluation monitoring wells (Table 1), only benzene has an ODWS/O. None of the concentration reported during 2000 exceeded the ODWS/O.

The occurrence of VOCs in groundwater at monitor location P4-1 is consistent with the interpretation of the inorganic groundwater quality data in Table 1, i.e., indicating that the monitoring location is impacted by landfill leachate.

7.0 GROUNDWATER COMPLIANCE ASSESSMENT

MOE Guideline B-7 (MOE, 1994a) addresses the level of off-site leachate impact on groundwater considered acceptable by the MOE and defines the level of impact on groundwater beyond which some form of remedial measure(s) would be warranted.

Under MOE Guideline B-7 (the "Reasonable Use Guideline"), a change in the quality of groundwater on adjacent properties will only be acceptable if the quality is not degraded in excess of fifty percent of the difference between background concentrations and established water quality criteria for aesthetic related parameters, and twenty-five percent of the difference between background conditions and established water quality criteria for health related parameters.

For the purpose of this site evaluation under MOE Guideline B-7, the natural groundwater quality is assumed to be represented by the data available from monitoring wells G10-1, G10-2 and G10-3 where data from G10-1 represents background in the silty clay deposit and data from G10-2 and G10-3 represents background in the granular deposit.

MOE Guideline B-7 applies to groundwater quality impact at the existing site boundary and is therefore directly applicable to monitoring well P9-1 along the north boundary. Because the leading edge of leachate-impacted groundwater downgradient and north of the waste disposal area is contained within the landfill site boundaries (i.e., no landfill leachate at monitor P9-1), the Reasonable Use performance objectives are satisfied in 2000 for the Limoges Landfill Site. Given the presence of the South Indian Creek along the east part of the site, and the fact that the creek is eroded into the silty clay deposit, it is concluded that the MOE Guidelines B-7 would not apply to the east boundary of the site. The east boundary of the site is a surface water compliance issue.

For informational purposes and to evaluate the extent of the plume exceeding Reasonable Use within the property boundary, the groundwater compliance assessment under MOE Guideline B-7 for the site is applied to on-site downgradient monitoring wells P2-1, P2-2, P3-1, P3-2, P4-1, P4-2, P8-1 and P8-2.

The range in natural background groundwater quality in monitoring wells G10-1, G10-2 and G10-3 with respect to ODWS/O parameters for which a Maximum Acceptable Concentration (MAC), Interim Maximum Acceptable Concentration (IMAC) or Aesthetic Objective (AO) has been established and is provided below, along with their respective Reasonable Use Performance Objectives (RUPO). The RUPO were calculated using the highest concentration. Where concentrations were below the method detection limit an existing concentration of zero was used in the calculation of the RUPO.

Parameter	Units	ODWS/O (MOE, 2000)	Range in Background Concentration Based on Monitoring Wells G10-2 and G10-3	RUPO Based on Monitoring Wells G10-2 and G10-3	Range in Background Concentration Based on Monitoring Well G10-1	RUPO Based on Monitoring Well G10-1
Nitrate	mg/L	10 (MAC)	<0.1 – 3.02	4.77	<0.1	2.5
Sulphate	mg/L	500 (AO)	17 – 25	262.5	27	263.5
Chloride	mg/L	250 (AO)	4 – 5	127.5	16	133
Sodium	mg/L	200 (AO)	8 – 40	120	35	117.5
Barium	mg/L	1 (MAC)	0.03 - 0.04	0.28	0.04	0.28
Boron	mg/L	5 (IMAC)	< 0.01	1.25	0.03	1.27
Iron	mg/L	0.30 (AO)	1.46 – 1.72	1.72	3.65	3.65
Manganese	mg/L	0.05 (AO)	0.04 - 0.09	0.09	0.12	0.12
TDS	mg/L	500 (AO)	144 – 180	340_	256	378
DOC	mg/L	5.0 (AO)	1.1 – 1.7	3.35	1.8	3.4
Cadmium	mg/L	0.005 (MAC)	< 0.0001	0.00125	< 0.0001	0.00125
Copper	mg/L	1.0 (AO)	0.002 - 0.006	0.503	0.005	0.503
Lead	mg/L	0.01 (MAC)	<0.001	0.0025	0.001	0.0033
Nitrite	mg/L	1.0 (MAC)	<0.1	0.25	<0.1	0.25
Zinc	mg/L	5.0 (AO)	<0.01 - 0.01	2.5	0.01	2.5
Benzene	ug/L	5.0 (MAC)	<0.5	1.25	<0.5	1.25
PCE	ug/L	30 (MAC)	<0.30 - 0.30	7.725	< 0.30	7.5

NOTES: mg/L – milligrams per Litre ug/L – micrograms per Litre

ODWO/S - Ontario Drinking Water Standard/Objective

A summary of the parameters with concentrations exceeding the maximum allowable under MOE Guideline B-7 at each monitoring well location selected for use in the groundwater compliance assessment based on the results of the 2000 monitoring program and using monitoring wells G10-2 and G10-3 and monitoring well G10-1 where appropriate is provided in Table 3.

Based on the results of the compliance assessment, on-site leachate impact exceeding the Reasonable Use Performance Objectives exists at boreholes P2, P4 and P8 for one health related parameter (nitrate) and four aesthetic parameters (iron, manganese, DOC and TDS). Leachate-impacted groundwater downgradient of the landfill areas at monitoring locations P2, P4 and P8 is likely intercepted by the South Indian Creek as discussed previously. An assessment of surface water compliance is provided in Section 9.0.

8.0 SURFACE WATER QUALITY

Surface water enters the site from two sources. The first source is the drainage ditch at the north end of the site, flowing approximately west to east. This ditch empties into the South Indian Creek. The South Indian Creek is located on-site east of the fill area and flows from the south to the north across the site. The South Indian Creek is the major surface water body in the area of the site. Surface water sampling stations are located on Figure 2. Because of its location in the South Indian Creek at the downstream property boundary, SW3 is considered to represent the "point of compliance" for the surface water quality compliance assessment (refer to Section 9.0).

The results of the field and laboratory chemical and physical analyses conducted during the 2000 monitoring program are presented in Appendix C along with relevant Provincial Water Quality Objectives (MOE, 1994b) and the data from previous monitoring sessions for the creek and ditch.

8.1 Background Conditions

Background surface water quality in the north drainage ditch is represented by the data available from SW6 (west of the active landfill in the north drainage ditch). Surface water quality at this station is characterized by PWQO exceedances of total phosphorus, phenols and unionized ammonia on one occasion during 2000 sampling. Historic high concentrations for numerous parameters were observed in the August 2000 sampling session.

Background surface water quality in the South Indian Creek is represented by the data available from SW1 (upstream location on the site at Concession Road 3). Surface water quality at this station is characterized by PWQO exceedances of aluminum, iron and total phosphorus and phenols and silver, on one occasion.

8.2 Discussion

The physical and chemical parameters with reported levels exceeding their respective Provincial Water Quality Objectives (PWQO); trends in surface water quality; a comparison of the surface water quality to background conditions; and, an interpretation of the surface water quality data are summarized in Table 4.

8.2.1 Drainage Ditch

Minor increases in parameter concentrations are noted adjacent to the active landfill in the drainage ditch at SW4. Further downstream in the drainage ditch at SW5 increases in the concentrations of chloride, sodium, boron and iron, are observed, indicating leachate impacts from the landfill entering the drainage ditch.

8.2.2 South Indian Creek

With respect to 2000 surface water quality trends between stations SW1, SW2 and SW3 and in the South Indian Creek, the following comments are provided:

- Historic highs for alkalinity, boron, copper and phosphate were observed at station SW2 during 2000. Historic highs for aluminum, cobalt, phenols and phosphate were observed at station SW3 during 2000.
- The surface water quality at stations SW1, SW2 and SW3 were similar during the August and November 2000 monitoring sessions although the iron level was highest at SW2 in August 2000 and the aluminum and total phosphorus concentrations were highest at SW1 in November 2000.
- Peak concentrations and parameter trends at station SW3 generally mirror what is occurring at station SW2 during 2000 monitoring. Relatively no impact from the leachate-impacted water entering the creek was evident during 2000.

9.0 SURFACE WATER COMPLIANCE ASSESSMENT

This section provides an assessment of the impact of the landfill site on surface water quality in the South Indian Creek based on the results of the 2000 monitoring program.

Based on the available data on the surface water quality at station SW1, it is interpreted that the surface water at this location represents background surface water quality in the South Indian Creek. The parameter concentrations exceeding the PWQO at the background surface water quality monitoring location during the 2000 monitoring program were aluminum, iron, phenols, silver and total phosphorus. Therefore, it is assumed for the purpose of this assessment that the background surface water quality in the vicinity of the landfill site does not naturally meet the PWQO for all parameters. For this surface water quality compliance assessment, it is considered that Policy 2 (MOEE, 1994b) would apply to surface water quality in the vicinity of the landfill site. Policy 2 indicates that "water quality which presently does not meet the Provincial Water Quality Objectives shall not be degraded further and all practical measures shall be taken to upgrade the water quality to the Objectives".

For the purpose of this surface water quality compliance assessment, the PWQO are being applied to surface water sampling station SW3 because this sampling station is located downstream at the "point of compliance" where the South Indian Creek flows off the landfill site.

The 2000 aluminum, iron and total phosphorus concentrations at station SW3 are within the historical range reported at station SW1 although they do exceed the PWQO. With respect to aluminum, iron and total phosphorus concentrations at station SW3, no distinct seasonal variation applicable to each of these three parameters is evident at this time. Additional monitoring data are required to define seasonal variations in surface water quality (if they exist) and to provide a comprehensive surface water impact assessment for the South Indian Creek.

10.0 SITE-SPECIFIC MONITORING PROGRAM AND TRIGGER MECHANISMS

10.1 Preamble

The results of the hydrogeological investigations and monitoring programs conducted to date have defined the extent and degree of impacts on overburden groundwater and surface water resources as a result of leachate migration from the Limoges Landfill Site. The work to date has identified *Key Indicator Parameters* which permit the differentiation between the water quality impacts associated with the landfill site (i.e., the "leachate-impacted groundwater plume") and other potential impacts including road salting activities.

10.2 Key Indicator Parameters

A Key Indicator Parameter for a landfill site is defined as being a parameter which is useful in determining the presence/absence of landfill leachate impact on water resources; assessing the degree of leachate impact on water resources; and, is useful in determining the extent of leachate impact near the landfill site.

For a parameter to be useful as a **Key Indicator Parameter** for a landfill site, the following characteristics are desirable:

- the parameter is present in relatively low concentrations in background (natural) water quality near the site and characterized by significantly higher concentrations in leachate generated at the landfill site;
- the concentration of a *Key Indicator Parameter* should not vary significantly over time at background monitoring locations (i.e., low variability is desirable) in order to be a reliable indicator of leachate impact;
- the trend in the parameter concentration must be relatively consistent over time (allowing for seasonal variations in quality) in terms of the persistence of elevated levels in landfill leachate relative to background conditions (i.e., parameter concentrations should not vary dramatically over short periods of time such that during one monitoring event the concentration is indicative of background conditions, whereas during another monitoring event the concentration at the same monitoring location is indicative of leachate impact);
- for natural attenuation landfill sites (such as the Limoges Landfill Site), conservative parameters which are relatively mobile in the groundwater flow system (e.g., in this case chloride, boron and sulphate) and are not subject to significant attenuation mechanisms (e.g., adsorption, biological uptake, precipitation, etc.) are most appropriate for characterizing the extent of leachate impact

from a landfill site on water resources; potential leachate constituents characterized by a lower mobility in the subsurface environment (e.g., heavy metals) are typically attenuated by the soil in close proximity to the fill area and thus the extent of impact on groundwater resources is minimal; and

parameter concentrations in groundwater and surface water should exhibit spatial variations in concentration relative to the location of the fill area(s) and physical hydrogeological setting of the site (i.e., higher parameter concentrations immediately downgradient from the fill area with progressively lower concentrations with increasing distances downgradient from the fill area).

Based on the available data, the following table summarizes the *Key Indicator Parameters* for the *landfill leachate-impacted groundwater plume/surface water impact* (primary parameters) along with other secondary parameters which assist in the overall interpretation of water quality data and/or are relevant in terms of assessing the site compliance. Secondary parameters are characterized by variable concentrations over time which are not necessarily related to impacts from the landfill; as such, the concentrations of these secondary parameters must be evaluated in the context of the concentration trends for the primary parameters.

KEY INDICATOR PARAMETERS				
Primary Parameters	Secondary Parameters			
Boron	DOC			
Hardness	Iron			
Chloride	Manganese			
Strontium				
Sulphate				
TDS				
Total Phosphorus				

Collectively, the parameters listed above represent the *Key Indicator Parameters* in terms of groundwater and surface water conditions in the vicinity of the Limoges Landfill Site. As discussed in Sections 10.4.2 and 10.4.3, selected monitoring wells and surface water monitoring stations have been identified for the purpose of monitoring these *Key Indicator Parameters* in the area of the Limoges Landfill Site.

10.3 Surveillance Parameters

The site-specific *Key Indicator Parameters* should be evaluated on an annual basis based on the groundwater quality data available from selected sampling locations which are sampled on a regular basis for an more exhaustive list of *Surveillance Parameters*. As discussed in Sections 10.4.2 and 10.4.3, selected monitoring wells and surface water sampling stations have been identified for the purpose of monitoring the groundwater and surface water concentrations of these *Surveillance Parameters* in the area of the Limoges Landfill Site.

Surveillance sampling locations are defined as monitoring locations where a more extensive suite of chemical and physical parameters are monitored on a routine basis for the purpose of providing a detailed data base pertaining to groundwater and surface water quality in the area of the landfill site. The designation of surveillance sampling locations at a landfill site is essential when the site monitoring program is aimed towards the monitoring of previously identified site-specific *Key Indicator Parameters*. The inclusion of surveillance sampling locations in a landfill site monitoring program permits a comprehensive assessment of water quality to be completed on a routine basis. This is advantageous for the following reasons:

- changes in background water quality in the area of the site can be monitored over time;
- temporal changes in leachate quality can be monitored;
- the rationale for the selection of the site-specific **Key Indicator Parameters** can be validated on an ongoing basis thus permitting the justified addition or deletion of parameters, as required to adequately monitor the environmental performance of the landfill site;
- as moderately mobile leachate constituents potentially become more widespread over time
 within the plume, additional parameters can be added to the list of site-specific Key Indicator
 Parameters in order to ensure that the site monitoring program is adequate;
- in the event that chemical characteristics of the leachate change over time the list of site-specific *Key Indicator Parameters* could be modified to ensure that the site monitoring program is adequate; and
- Parameters and there is a significant increase in the concentrations of the Key Indicator Parameters and there is a requirement for a more extensive assessment of water quality characteristics in the vicinity of the site, the data available from the surveillance sampling locations would permit the selection of the most appropriate parameters to be added to the site monitoring program based on factual information pertaining to leachate quality characteristics rather than the selection of additional parameters based solely on those parameters for which groundwater (or surface water) quality criteria have been established.

10.4 Proposed 2001 Monitoring Program

10.4.1 Objectives

A groundwater and surface water monitoring program forms an integral part of the management of a landfill during both the operational period and post-closure. The purpose of such a program is to enable the trends in the concentrations of various analytical parameters to be established and compared with both the background quality and the regulatory water quality standards, and from this

to determine the adequacy of any existing mitigation systems or the need to implement contingency/remedial measures to reduce impacts from the landfill site on off-site groundwater and/or surface water regimes to an acceptable level.

The objectives of the proposed 2001 groundwater and surface water monitoring program are to monitor background water quality; leachate quality; water quality within the areas affected by the landfill leachate-impacted groundwater plume and to build a larger data base of surface water data to enable a better understanding of any seasonal effects on water quality that may be occurring.

10.4.2 Groundwater Component

The proposed groundwater monitoring program for 2001 is summarized in Table 5.

It is proposed that the groundwater monitoring sessions be carried out in the vicinity of the landfill site during the spring (April/May) and fall (October) of 2001.

During each monitoring session, a complete set of groundwater levels should be measured in all existing monitors. The *Routine Sampling Locations* and *Surveillance Sampling Locations* which are proposed to be included in the groundwater monitoring program, along with the rationale for their inclusion are described below:

Rationale	Sampling Locations
Background Monitoring Locations	G10-1*, G10-2*, G10-3*
Impact Evaluation Monitors	P2-1, P2-2, P3-1*, P3-2*, P4-1*, P4-2*, P5-1, P5-2, P6-1,
	P6-2, P7-1, P7-2, P8-1, P8-2, P9-1*

NOTES:

An appropriate number of field duplicates (i.e., approximately one duplicate for every 10 samples collected) should be prepared during each monitoring session as part of the Quality Assurance/Quality Control (QA/QC) program.

The temperature, pH and conductivity of the groundwater samples should be measured in the field at the time of sample collection. The groundwater samples collected from the *Routine Sampling Locations* during the monitoring sessions should be submitted to a private laboratory for analysis of the site-specific *Key Indicator Parameters*. The groundwater samples collected from the *Surveillance Sampling Locations* should be submitted to a private laboratory for analysis of the *Surveillance Parameters*.

^{*} Surveillance Sampling Location - all others are Routine Sampling Locations

The groundwater sampling protocols followed during the 2000 monitoring program (refer to Sections 3.2 of this report) should be adhered to during subsequent groundwater monitoring sessions. All laboratory analyses on groundwater samples should be performed by a private analytical laboratory and the method detection limits (MDLs) for the specific analyses should be commensurate with the standards established in the Provincial Water Quality Objectives (MOEE, 1994b) or the Ontario Drinking Water Standards/Objectives (MOE, 2000), whichever is lower.

10.4.3 Surface Water Component

The proposed surface water monitoring program during 2001 is summarized in Table 6.

It is proposed that the surface water monitoring sessions be carried out in the vicinity of the landfill site during the spring (April/May), summer (July/August), fall (October) and winter (December) of 2001.

The Routine Sampling Locations and Surveillance Sampling Locations which are proposed to be included in the surface water monitoring program, along with the rationale for their inclusion are described below:

Rationale	Sampling Locations		
Background Sampling Locations	SW1*, SW6*		
Evaluation Sampling Locations	SW2, SW3*, SW4, SW5, SW7*		

NOTES:

An appropriate number of field duplicates (i.e., approximately one duplicate for every 10 samples collected) should be prepared during each monitoring session as part of the Quality Assurance/Quality Control (QA/QC) program.

The temperature, pH, conductivity and dissolved oxygen content of the surface water samples should be measured in the field at the time of sample collection. The surface water samples collected from the *Routine Sampling Stations* during the monitoring sessions should be submitted to a private laboratory for analysis of the site-specific *Key Indicator Parameters*. The surface water samples collected from the *Surveillance Sampling Locations* should be submitted to a private laboratory for analysis of the *Surveillance Parameters*.

The surface water sampling protocols followed during the 2000 monitoring program (refer to Sections 3.3 of this report) should be adhered to during subsequent surface water monitoring sessions. All laboratory analyses on surface water samples should be performed by a private analytical laboratory and the method detection limits (MDLs) for the specific analyses should be commensurate with the standards established in the Provincial Water Quality Objectives (MOEE, 1994b) or the Ontario Drinking Water Standards/Objectives (MOE, 2000), whichever is lower.

^{*} Surveillance Sampling Location – all others are Routine Sampling Locations

10.4.4 Reporting

An annual monitoring report for the Limoges Landfill Site should be prepared. The annual monitoring report should provide a discussion of the general physical hydrogeological setting of the site and the groundwater and surface water geochemistry (including apparent trends over time) in the vicinity of the site. The report should also evaluate the landfill site's performance relative to the regulatory requirements.

Each annual monitoring report should also include a re-evaluation of the groundwater and surface water monitoring requirements at the Limoges Landfill Site. In the event that the monitoring program proposed in this report requires modification so as to adequately monitor the future performance of the site, the proposed modifications for the subsequent year should be discussed with the MOE in order to obtain their approval/concurrence for the changes prior to implementation.

10.5 Objectives and Introduction of Trigger Mechanisms

The objectives of trigger mechanisms at the Limoges Landfill Site are to utilize the results of the ongoing surface water and groundwater monitoring programs (with the main focus being the trends in the concentrations of the primary parameters as noted in Section 10.2) to assess site compliance and to trigger implementation of the contingency plans, when and if necessary. The purposes of the trigger mechanisms are to prevent leachate-impacted groundwater exceeding MOE Guideline B-7 from migrating beyond the site boundaries, and to prevent impact on surface water quality exceeding that permissible under MOE Policy 2 (should there be indications that this is likely to happen).

10.6 Compliance Evaluation Parameters and Trigger Concentrations

10.6.1 Preamble

Compliance Evaluation Parameters are defined as the site-specific Key Indicator Parameters which have established Provincial Water Quality Objectives (surface water) or Ontario Drinking Water Objectives/Standards (groundwater).

A Reasonable Use Performance Objective refers to the maximum allowable concentration for a Compliance Evaluation Parameter in groundwater at the point of compliance under MOE Guideline B-7. This value can also be referred to as the Groundwater Compliance Concentration.

A Surface Water Compliance Concentration refers to the higher of either the highest measured background or the Provincial Water Quality Objectives for each Compliance Evaluation Parameter based on the existing background data.

001-2782

A *Trigger Concentration* is a *Compliance Evaluation Parameter* concentration which exceeds the Reasonable Use Performance Objective for groundwater or the compliance concentration for surface water, and thus could be indicative of adverse leachate impact on the groundwater or surface water.

- 27 -

It is noted that future *Compliance Evaluation Parameters* may differ from those discussed herein due to the addition or deletion of site-specific *Key Indicator Parameters* or changes to the ODWO/S and/or PWQO in the future.

10.6.2 Groundwater

The highest background concentration from the background groundwater quality data set are used to derive the Reasonable Use Performance Objectives and corresponding trigger concentrations for each of the seven *Compliance Evaluation Parameters*. Where the background concentration is less than the detection limit for that parameter, a concentration of zero is used to derive the Reasonable Use Performance Objective and corresponding trigger concentration.

The background groundwater quality for each of the *Key Indicator Parameters* for background monitors, the Reasonable Use Performance Objectives and current trigger concentrations for the granular and silty clay deposits are presented below:

Key Indicator	ODWO/S	Background Range (mg/L)		Reasonable Use Performance Objective (mg/L)		Trigger Concentration (mg/L)	
Parameters	(mg/L)	Granular Deposit ¹	Silty Clay Deposit ²	Granular Deposit	Silty Clay Deposit	Granular Deposit	Silty Clay Deposit
Chloride (P)	250	4 – 5	16	127.5	133	>127.5	>133
Sulphate (P)	500	17 – 25	27	263	264	>263	>264
Strontium (P)		0.027 - 0.063	0.079				
Manganese (S)	0.05	0.04 - 0.09	0.12	0.09	0.12	>0.09	>0.12
Boron (P)	5	<0.01	0.03	1.25	1.27	>1.25	>1.27
Hardness (P)		19 – 86	74				
Iron (S)	0.3	1.46 – 1.72	3.65	1.72	3.65	>1.72	>3.65
DOC (S)	5.0	1.1 – 1.7	1.8	3.35	3.4	>3.35	>3.4
TDS (P)	500	144 – 180	256	340	378	>340	>378
Total Phosphorus (P)		0.15 - 0.3	0.18				

Notes:

mg/L - milligrams per Litre

ODWO/S - Ontario Drinking Water Objectives/Standards (2000)

¹ Background data obtained from monitors G10-2 and G10-3

² Background data obtained from monitor G10-1

³ ODWO/S values presented relate specifically to non-health related parameters (i.e., aesthetic parameters) and health related parameters for which a maximum acceptable concentration (MAC) or interim maximum acceptable concentration (IMAC) has been established.

P - Primary Parameter

 $S-Secondary\ Parameter$

The calculated maximum allowable boundary concentrations for these parameters under MOE Guideline B-7 will be modified, as required, based on additional background groundwater quality data which will be obtained during future monitoring programs.

10.6.3 Surface Water

The background surface water quality for each of the *Key Indicator Parameters* for background surface water station SW-1 compliance concentrations and current trigger concentrations are presented below:

Key Indicator Parameters P/S	PWQO (mg/L)	Background Range ¹ SW1 (mg/L)	Compliance Concentration (mg/L)	Trigger Concentration (mg/L)
Chloride (P)		22 – 185		
Sulphate (P)		10 – 60		
Strontium (P)		0.143 - 0.622		
Boron (P)	0.2	<0.01 – 0.05	0.2	>0.2
Manganese (S)		0.01 - 0.21		
Iron (S)	0.3	0.18 - 0.84	0.84	>0.84
Hardness (P)		108 – 344		
DOC(S)		4.7 – 14.9		
TDS (P)		168 – 560		
Total Phosphorus (P)	0.03	0.04-0.20	0.20	>0.20

Notes:

mg/L - milligrams per Litre

PWQO - Provincial Water Quality Objectives (1994b)

background surface water quality based on SW-1 (1991-2000)

P - Primary Parameter

S - Secondary Parameter

The calculated trigger concentrations at surface water sampling station SW1 will be modified, as required, based on additional background surface water quality data which will be obtained during future monitoring programs.

10.7 Trigger Formats

10.7.1 Groundwater Trigger

The trigger parameters are chloride, sulphate, DOC, TDS, manganese, iron and boron. The trigger concentrations will be those calculated using MOE Guideline B-7 or the existing background if higher than ODWO/S. The calculated trigger concentrations will be based on all the background data which exists at the time of each comparison with the trigger criteria. These trigger concentrations may vary over time as background concentrations from future monitoring programs are added to the data base.

The groundwater trigger will be considered to have been exceeded when one or more of the above primary trigger parameters exceeds the maximum trigger concentration during two consecutive monitoring sessions (not including non-compliance verification re-sampling).

Any observed exceedances of the primary trigger concentrations will be verified by re-sampling for the parameter(s) of concern within one month of the original sampling session at which time non-compliance was measured. The time frame of one month is to allow time for the initial chemical analyses to be performed, received from the analytical laboratory and interpreted. If the non-compliance is not confirmed by the follow-up sample, then the initial non-compliance will be considered anomalous and will be discounted. The historical trends in the *Compliance Evaluation Parameter* concentrations at the points of compliance would also be used in concluding that monitoring results are anomalous.

If exceedances of the primary trigger parameter concentrations are confirmed at the trigger location (i.e., confirmed non-compliance during two consecutive monitoring sessions), a three-step process will be initiated for the purpose of determining whether implementation of the contingency plan is warranted. The three-step process is as follows:

- Step 1 assess whether the non-compliance is due to migration of the leachate plume as a whole, or whether it is partially or wholly explicable by other factors. This will be achieved by considering trends in *Key Indicator Parameter* concentrations at all relevant monitoring locations as well as data available from *Surveillance Monitors/Stations* or could include an expanded suite of monitoring parameters (if warranted depending on the ongoing monitoring results from the *Surveillance Groundwater Monitors* and *Surveillance Surface Water Stations*) and/or an increased sampling frequency
- Step 2 discussion of the results of Step 1 between the Municipality and the MOE to decide whether implementation of the contingency plan is warranted
- Step 3 if the conclusion of Step 2 is affirmative, then the groundwater contingency plan would be implemented

10.7.2 Surface Water Trigger

The trigger parameters are boron, total phosphorus and iron. For station SW1 the trigger concentrations will be based on all background data and PWQO which exists at the time of each comparison with the trigger concentration. These trigger concentrations at station SW1 may vary over time as background concentrations from future monitoring programs are added to the data base.

The surface water trigger will be considered to have been exceeded when one or more of the above primary trigger parameters exceeds the maximum allowable concentration (i.e., trigger concentrations) during two consecutive monitoring sessions (not including non-compliance verification re-sampling).

Any observed non-compliance will be verified by re-sampling for the parameter(s) of concern within one month of the initial sampling session. The time frame of one month is to allow time for the initial chemical analyses to be performed, received from the analytical laboratory and interpreted. If the non-compliance is not confirmed by the follow-up sample, then the initial non-compliance will be considered anomalous and will be discounted. The historical trends in the *Compliance Evaluation Parameter* concentrations at the point of compliance would also be used in assuming whether or not these monitoring results are anomalous.

If non-compliance is confirmed at the trigger location (i.e., confirmed non-compliance during two consecutive monitoring sessions), a three-step process will be initiated for the purpose of determining whether implementation of the contingency plan is warranted. The three-step process is as follows:

- Step 1 assess whether the non-compliance is due to migration of the leachate plume as a whole, or whether it is partially or wholly explicable by other factors. This will be achieved by considering trends in *Key Indicator Parameter* concentrations at all relevant monitoring locations as well as data available from *Surveillance Monitors/Stations* or could include an expanded suite of monitoring parameters (if warranted depending on the ongoing monitoring results from the *Surveillance Groundwater Monitors* and *Surveillance Surface Water Stations*) and/or an increased sampling frequency
- Step 2 discussion of the results of Step 1 between the Municipality and the MOE to decide whether implementation of the contingency plan is warranted
- Step 3 if the conclusion of Step 2 is affirmative, then the surface water contingency plan would be implemented

10.8 Trigger Locations

For the purpose of establishing distinct trigger mechanisms for this site, each of the four site boundaries are discussed separately in the following subsections. These site boundaries, together with their associated trigger mechanisms (when appropriate), are as follows, with rationale provided in subsections 10.8.1, 10.8.2 and 10.8.3.

- west boundary (no trigger required)
- north boundary (groundwater trigger)
- east boundary (surface water triggers)
- south boundary (no trigger required)

10.8.1 West and South Boundaries

Theoretically, the trigger mechanism for the west and south boundaries would likely be a groundwater trigger mechanism. Since the interpreted direction of groundwater flow and the direction of surface water flow via the creek and ditch are ultimately toward the north/northeast, north and east, respectively, no trigger mechanisms are required for these two boundaries.

10.8.2 North Boundary

The trigger mechanism for the north boundary is a groundwater trigger. There is potential that surface water could also be a trigger mechanism, however the ditch on the northern property boundary drains into the South Indian Creek and can be monitored via surface water sampling station SW3 at the property boundary.

The groundwater trigger monitoring location along this property boundary would be monitor P9-1.

10.8.3 East Boundary

The trigger mechanism for the east boundary is a surface water trigger. The trigger monitoring location along this property boundary is surface water sampling station SW3.

10.9 Modification to Trigger Mechanisms

If, depending on observations and ongoing site monitoring results, there is a need in the future to modify the trigger mechanisms, a formal application would be made by the Municipality to the MOE requesting the necessary changes.

11.0 LIMITATIONS AND USE OF REPORT

This report was prepared for the exclusive use of The Corporation of the Nation Municipality. The report, which specifically includes all tables, figures and appendices, is based on data and information collected by Golder Associates and is based solely on the conditions of the properties at the time of the work, supplemented by historical information and data obtained by Golder Associates as described in this report, and in the previous reports prepared by Golder Associates (see *References* for list of previous reports). Each of these reports must be read and understood collectively, and can only be relied upon in their totality.

Golder Associates has relied in good faith on all information provided and does not accept responsibility for any deficiency, misstatements, or inaccuracies contained in the reports as a result of omissions, misinterpretation, or fraudulent acts of the persons contacted or errors or omissions in the reviewed documentation.

The assessment of environmental conditions and possible hazards at this site has been made using the results of physical measurements and chemical analyses of liquids from a number of locations. The site conditions between sampling locations have been inferred based on conditions observed at borehole and monitoring well locations. Subsurface conditions may vary from these sampled locations.

The services performed, as described in this report, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates should be requested to re-evaluate the conclusions of this report, and to provide amendments as required. The groundwater monitors installed during the course of this investigation or previous investigations by Golder Associates have been left in place. These groundwater monitors are the property of The Corporation of the Nation Municipality and not Golder Associates.

GOLDER ASSOCIATES LTD.

Environmental Division

P.L. Edmond, P.Eng.

Geo-environmental Engineer

K.A. Marentette, M.Sc.

Senior Hydrogeologist/Associate

PLE:KAM:cr

n:\active\2700\001-2782\word\rpt-001.doc

REFERENCES

- Beatty Franz and Associates Ltd., 1998 *Hydrogeological Assessment of the Nation Municipality Limoges Landfill*. Township of Cambridge, Ontario, September 1998.
- Freeze, R.A. and Cherry, J.A. Groundwater. New Jersey. Prentice-Hall Inc., 604 p. 1979.
- Golder Associates, 2000. 1999 Groundwater and Surface Water Monitoring Program, Limoges Landfill Site. Corporation of the Nation Municipality, Ontario, Report No. 991-2835, April 2000.
- Hubbert, M.K., 1940. The Theory of Groundwater Motion. Journal of Geology, No. 48, p. 785-944.
- McNeely Engineering Consultants Ltd., 1992. Site Development and Operations Plan for Waste Disposal Site: Lot 29 Concession III (Limoges). Township of Cambridge, Ontario, March 1992
- Ministry of the Environment, 2000. *Ontario Drinking Water Standards*. Ontario Ministry of the Environment, August 2000, 68 p.
- Ministry of the Environment, 1994a. Guideline B-7: Incorporation of the Reasonable Use Concept into MOE Groundwater Management: Ontario Ministry of the Environment and Energy Program Development Branch: Ontario Ministry of the Environment and Energy, April 1994, 8 p.
- Ministry of the Environment, 1994b. Water Management Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of the Environment and Energy. Ontario Ministry of the Environment and Energy, July 1994 (Reprint in 1999).
- StanCon Groundwater Engineering Ltd., 1992. *Hydrogeological Study: Township of Cambridge, Limoges Landfill Site.* Township of Cambridge, Ontario, February 1992.

TABLE 1

INTERPRETATION OF 2000 INORGANIC GROUNDWATER QUALITY DATA IMPACT EVALUATION MONITORING WELLS

Monitoring Well	Parameters Exceeding ODWO/S in 2000	Trend(s)	Parameters Exceeding Background Conditions in 2000	Hydrogeological Interpretation
P2-1 Granular Layer/ Silty Clay	- manganese - DOC - iron	- many parameters had historic high concentrations in 2000 including but not limited to: aluminum, alkalinity,	ammonia, total phosphorus, aluminum, alkalinity, boron, calcium, strontium, chloride, COD, DOC, titanium, TDS, hardness, iron, magnesium,	 borehole P2 is located immediately northwest of the active landfilling area, south of the northern drainage ditch (see Figure 2). groundwater quality at monitoring well P2-1 is interpreted to exhibit a minor impact from landfill leachate (based primarily on elevated levels of boron and DOC); the minor degree of impact is supported by the low chloride concentrations.
		boron, chloride, COD, DOC, magnesium, manganese, total phosphorus, strontium and TDS	manganese, silicon, silver	
P2-2 Granular Layer	- manganese - iron - TDS	increased hardness, alkalinity, TDS, strontium and manganese concentrations over time	alkalinity, ammonia, barium, boron, calcium, DOC, hardness, total phosphorus, potassium, strontium, sulphate, aluminum, chloride, magnesium, manganese, TDS	 borehole P2 is located immediately northwest of the active landfilling area, south of the northern drainage ditch (see Figure 2). groundwater quality at monitoring well P2-2 is interpreted to exhibit a minor impact from landfill leachate (based primarily on elevated levels of boron, hardness and TDS).
P3-1 Granular Layer	[N/A, no sample collected in 2000]	- insufficient historic data	[N/A, no sample collected in 2000]	• borehole P3 is located immediately north (downgradient) of the active landfilling area (see Figure 2). P3-1 could be expected to represent leachate conditions at the site.
Similar Dayor				• groundwater quality at monitoring well P3-1 could not be assessed in 2000 as the well was dry. In 1999, selected groundwater parameters at P3-1 were interpreted to be elevated relative to background levels (Golder Associates, 2000).

TABLE 1 - continued

Monitoring Well	Parameters Exceeding ODWO/S in 2000	Trend(s)	Parameters Exceeding Background Conditions in 2000	Hydrogeological Interpretation
P3-2 Granular Layer	[N/A, no sample collected in 2000]	- insufficient historic data	[N/A, no sample collected in 2000]	 borehole P3 is located immediately north (downgradient) of the active landfilling area (see Figure 2). P3-2 could be expected to represent leachate conditions at the site. groundwater quality at monitoring well P3-2 could not be assessed in 2000 as the well was dry. In 1998, selected groundwater parameters at P3-2 were interpreted to be elevated relative to background levels (Beatty Franz, 1998).
P4-1 Granular Layer	- iron - manganese - TDS - DOC	- decreased chloride, sulphate and COD concentrations over time	alkalinity, barium, boron, calcium, chloride, COD, DOC, hardness, iron, magnesium, manganese, potassium, sodium, strontium, sulphate, TDS, cadmium, cobalt, nickel, total phosphorus, silicon	 borehole P4 is located immediately northeast (downgradient) of the active landfilling area, west of the South Indian Creek (see Figure 2). monitoring well P4-1 is interpreted to be impacted by landfill leachate (based primarily on elevated concentrations of DOC, TDS, manganese, chloride, boron and sulphate).
P4-2 Granular Layer	- DOC - manganese - TDS	- no apparent trends	alkalinity, barium, boron, calcium, COD, copper, DOC, hardness, magnesium, manganese, total phosphorus, potassium, sodium, strontium, sulphate, TDS, cadmium, chloride, cobalt, molybdenum, nitrate	 borehole P4 is located immediately northeast (downgradient) of the active landfilling area, west of the South Indian Creek (see Figure 2). monitoring well P4-2 is interpreted to be impacted by landfill leachate (based primarily on elevated concentrations of boron, DOC, TDS, chloride and manganese).
P5-1 Granular Layer	- iron	decreasing hardness and alkalinity concentrations over time	ammonia, potassium, chloride, conductivity, DOC, zinc	 borehole P5 is located immediately south (upgradient) of the active landfilling area (see Figure 2). groundwater quality at monitoring well P5-1 does not appear to be impacted by landfill leachate and is considered representative of natural groundwater quality in the granular layer.

TABLE 1 - continued

Monitoring Well	Parameters Exceeding ODWO/S in 2000	Trend(s)	Parameters Exceeding Background Conditions in 2000	Hydrogeological Interpretation
P5-2 Granular Layer	- iron - manganese	 increasing silicon concentrations over time decreasing strontium concentrations over time 	DOC, strontium, boron, silicon	 borehole P5 is located immediately south (upgradient) of the active landfilling area (see Figure 2). in the absence of elevated concentrations of leachate indicator parameters (such as chloride, boron, sulphate and TDS and the physical hydrogeological setting of the site), groundwater quality at monitoring well P5-2 is interpreted not to be impacted by landfill leachate.
P6-1 Granular Layer/ Silty Clay	- iron - manganese	- no apparent trends	alkalinity, barium, calcium, chloride, DOC, hardness, magnesium, manganese, total phosphorus, silicon, strontium, TDS	 borehole P6 is located on the western side of the access road to the site and is approximately 150 metres south of the active landfill (see Figure 2) groundwater quality at monitoring well P6-1 may be influenced by road salting activities and/or the screened interval partially within the silty clay layer
P6-2 Granular Layer		- no apparent trends	chloride, total phosphorus, strontium	 borehole P6 is located on the western side of the access road to the site and is approximately 150 metres south of the active landfill (see Figure 2) groundwater quality at monitoring well P6-2 may be influenced by road salting activities
P7-1 Granular Layer/ Silty Clay	- iron - manganese	- several parameters had historic high concentrations in 2000 including barium, aluminum, cobalt, COD, magnesium, silicon, strontium, TDS, titanium and vanadium	aluminum, boron, DOC, phosphate, total phosphorus, potassium, sodium, alkalinity, chloride, cobalt, COD, copper, hardness, iron, lead, magnesium, manganese, silicon, strontium, TDS, titanium, vanadium	 borehole P7 is located immediately southeast of the active landfilling area, outside the downgradient groundwater flow path from the landfill (see Figure 2). groundwater quality at monitoring well P7-1 is interpreted to exhibit a minor impact from landfill leachate (based primarily on elevated levels of boron, TDS and chloride) and/or effects of road salting on access road.
P7-2 Granular Layer	- iron	- several parameters had historic high concentrations in 2000 including ammonia, titanium and vandium	ammonia, total phosphorus	 borehole P7 is located immediately southeast of the active landfilling area, outside the downgradient groundwater flow path from the landfill (see Figure 2). groundwater quality at monitoring well P7-2 does not appear to be impacted by landfill leachate and is considered representative of natural groundwater quality in the overburden.

TABLE 1 - continued

Monitoring Well	Parameters Exceeding ODWO/S in 2000	Trend(s)	Parameters Exceeding Background Conditions in 2000	Hydrogeological Interpretation
P8-1 Silty Clay	- iron	- decreased DOC concentrations over time	alkalinity, ammonia, boron, chloride, DOC, hardness, magnesium, manganese, nitrate, phosphate, total phosphorus, potassium, sodium, strontium, sulphate, TDS	 borehole P8 is located adjacent to the southeast part of the active landfilling area, west of the South Indian Creek (see Figure 2). monitoring well P8-1 is screened in the silty clay groundwater quality at monitoring well P8-1 is interpreted to exhibit a minor impact from landfill leachate (based primarily on elevated levels of chloride, boron and sulphate).
P8-2 Granular Layer	- DOC - manganese - TDS	decreased sulphate and chloride concentrations over time	alkalinity, barium, boron, calcium, chloride, copper, DOC, hardness, magnesium, manganese, potassium, silicon, sodium, strontium, TDS, vanadium, cadmium, cobalt, COD, molybdenum, nickel, total phosphorus	 borehole P8 is located adjacent to the southeast part of the active landfilling area, west of the South Indian Creek (see Figure 2). groundwater quality at monitoring well P8-2 is interpreted to be impacted by landfill leachate (based primarily on elevated concentrations of chloride, boron, barium, TDS, DOC and manganese).
P9-1 Granular Layer/ Silty Clay	- manganese - iron	 no apparent trends high sulphate concentrations in October 1999 variable iron concentrations over time 	potassium, aluminum, barium, cobalt, COD, hardness, iron, lead, magnesium, manganese, titanium	 borehole P9 is located north of the active landfilling area along the northern site boundary (see Figure 2). groundwater quality at monitoring well P9-1 does not appear to be impacted by landfill leachate (based primarily on low chloride concentrations) and is considered representative of natural groundwater quality in the granular layer.

TABLE 2 SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN WATER SAMPLES, FALL 2000

CHEMICAL	ODWS/O ¹ (mg/L)	PWQO ² (µg/L)	Background Monitoring Wells			Impact Evaluation Monitoring Wells		Surface Water	
			G10-1	G10-2	G10-3	P4-1	P4-2	SW1	SW3
Benzene	5	100	ND	ND	ND	0.80	ND	ND	ND
cis-1,2-Dichloroethylene		200	ND	ND	ND	6.00	ND	ND	ND
Chloroform			1.00	1.30	0.70	ND	ND	2.10	ND
Tetrachloroethylene (PCE)	30	50	ND	0.30	ND	ND	ND	ND	ND

Notes 1 Ontario Drinking Water Standards/Objectives (MOE, 2000)

2 Provincial Water Quality Objectives (MOEE, 1994 (reprint 1999)

ND Not Detected

All units in parts per billion (micrograms per litre)

TABLE 3

SUMMARY OF PARAMETERS EXCEEDING REASONABLE USE PERFORMANCE OBJECTIVES BASED ON BACKGROUND CONDITIONS AT MONITORING LOCATION G10-00

	MONITORING SESSION				
MONITORING	November 2000				
WELL	Parameter	Concentration (mg/L)			
P2-1	Iron	2.03			
	Manganese	0.11			
	DOC	15.9			
P2-2	Manganese	0.28			
	TDS	880			
P3-1					
P3-2					
P4-1	DOC	22.2			
	Manganese	2.95			
	TDS	848			
	Iron	1.74			
P4-2	Nitrate	4.88			
	DOC	13.7			
	Manganese	5.78			
	TDS	668			
P8-1	[None]				
P8-2	DOC	31.7			
	Manganese	4.11			
	TDS	944			

TABLE 4

INTERPRETATION OF 2000 SURFACE WATER QUALITY DATA

Surface Water Sampling Station	Parameters Exceeding PWQO in 2000	Trend(s)	Parameters Exceeding Background Conditions* in 2000	Interpretation
SW1 (South Indian Creek)	- aluminum - iron - total phosphorus - phenols - silver	- chloride, nitrate, sulphate sodium, strontium, COD and TDS variable over time	N/A	 surface water station SW1 is located in the South Indian Creek upstream of the active landfill at Concession Road 3 (See Figure 2). SW1 is located greater than 200 metres upstream of the active landfill and is interpreted to not be impacted by the landfill. surface water conditions at this location are used to represent background surface water quality for the South Indian Creek. existing chloride concentrations are likely the result of road salting on Concession Road 3 or other upstream sources.
SW2 (South Indian Creek)	- aluminum - iron - total phosphorus	- chloride, nitrate, sulphate sodium, strontium, COD and TDS variable over time	copper	 surface water station SW2 is located in the South Indian Creek adjacent to the active landfill (See Figure 2). historic slightly elevated concentrations of some parameters in surface water at this location may indicate minor effects from landfill leachate, however this was not evident in 2000
SW3 (South Indian Creek)	- aluminum - iron - total phosphorus	- chloride, nitrate, sodium, COD, TDS and strontium variable over time	cobalt	 surface water station SW3 is located in the South Indian Creek downstream of the active landfill (See Figure 2). This station is considered to represent a "point of compliance" for surface water quality compliance assessment. historic slightly elevated concentrations of some parameters in surface water at this location may indicate minor effects from landfill leachate, however this was not evident in 2000
SW4 (Northern Drainage Ditch)	- unionized ammonia - iron - total phosphorus	- key leachate indicator parameters had been fairly constant with time however a slight increase in many parameters in 2000 was observed	boron, iron, chloride, vanadium	 surface water station SW4 is located adjacent to the active landfill in the northern drainage ditch (See Figure 2). surface water quality at this location is interpreted to exhibit a minor impact from landfill leachate (based primarily on elevated levels of chloride and boron).

TABLE 4 - continued

Surface Water Sampling Station	Parameters Exceeding PWQO in 2000	Trend(s)	Parameters Exceeding Background Conditions in 2000	Interpretation
SW5 (Northern Drainage Ditch)	- unionized ammonia - iron - total phosphorus	 during October 2000, concentrations of chloride, sodium, boron, iron, cobalt, copper and vanadium were higher compared to stations SW6 and SW4 COD and cobalt concentrations have increased over time 	boron, chloride, iron, sodium, cobalt, copper, vanadium	 surface water station SW5 is located downstream of the active landfill in the northern drainage ditch (See Figure 2). surface water quality at this location is interpreted to be impacted by landfill leachate.
SW6 (Northern	- phenols - total phosphorus - unionized	- historic high concentrations for numerous parameters observed in August 2000	N/A	 surface water station SW6 is located in the northern drainage ditch upstream (west) of the active landfill (See Figure 2). surface water at this location is interpreted to not be impacted
Drainage Ditch)	ammonia			by the landfill and is used to represent background surface water quality for the northern drainage ditch.
SW7 (South Indian Creek)	 boron iron total phosphorus cadmium cobalt copper zinc 	- insufficient historic data	alkalinity, boron, iron, total phosphorus, aluminum, cadmium, chromium, cobalt, copper, zinc	 surface water station SW7 is a leachate seep located along the west bank of the South Indian Creek near borehole P4. surface water quality at this location is interpreted to be impacted by landfill leachate.

Notes:

PWQO - Provincial Water Quality Objectives (Ministry of the Environment, 1994b)

^{*} Background conditions are represented by water quality at SW1 for surface water stations SW2, SW3 and SW7 in the South Indian Creek, and by SW6 for surface water stations SW4 and SW5 in the northern drainage ditch.

TABLE 5

PROPOSED 2001 GROUNDWATER MONITORING PROGRAM LIMOGES LANDFILL SITE

1.0 MONITORING SESSIONS

1.1 Water Level and Quality Monitoring

Spring (April/May)
Fall (October)

2.0 GROUNDWATER SAMPLING LOCATIONS

- 2.1 Routine Sampling Locations P2-1, P2-2, P6-1, P6-2, P7-1, P7-2, P8-1, P8-2
- 2.2 Surveillance Sampling Locations P3-1, P3-2, P4-1, P4-2, P9-1, G10-1, G10-2, G10-3
- 2.3 Field Duplicates

3.0 FIELD MEASURED PARAMETERS

Groundwater levels in all accessible monitoring wells

temperature, conductivity, pH

4.0 LABORATORY MEASURED PARAMETERS

4.1 Routine Sampling Locations

Key Indicator Parameters

boron, strontium, sulphate, TDS, DOC, hardness, chloride, iron, manganese, total phosphorus

4.2 Surveillance Sampling Locations

Surveillance Parameters

calcium, magnesium, sodium, potassium, aluminum, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, total phosphorus, silicon, silver, strontium, thallium, tin, titanium, vanadium, zinc (ICP Scan) hardness (calculated from laboratory calcium and magnesium analyses) alkalinity, TDS, chloride, sulphate, nitrate, nitrite, ortho-phosphate ammonia, DOC, COD phenols

Special Note For Parameters with Established Ontario Drinking Water Standards/Objectives - All laboratory analyses on groundwater samples will be performed by a private analytical laboratory and the method detection limits (MDLs) for the specific analyses should be commensurate with the standards established in the Provincial Water Quality Objectives or the Ontario Drinking Water Standards/Objectives, whichever is lower.

TABLE 6

PROPOSED 2001 SURFACE WATER SAMPLING PROGRAM LIMOGES LANDFILL SITE

1.0 MONITORING SESSIONS

1.1 Water Quality Monitoring

Spring (April/May) Summer (July/August) Fall (October) Winter (December)

2.0 SURFACE WATER SAMPLING STATIONS

2.1 Routine Sampling Stations

Creek to East of Site: SW2
Ditch to North of Site: SW4, SW5

2.2 Surveillance Sampling Locations

Creek to East of Site: SW1, SW3, SW7 Ditch to North of Site: SW6

2.3 Field Duplicate

3.0 FIELD MEASURED PARAMETERS

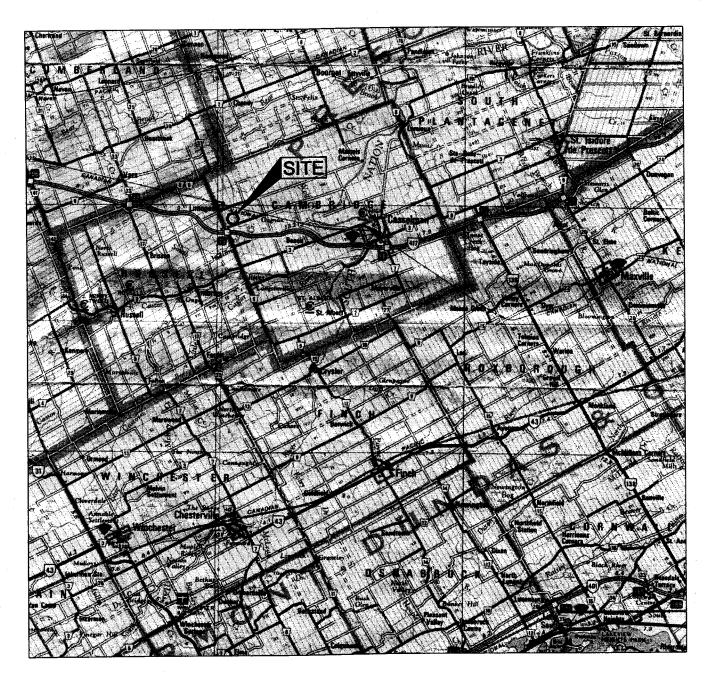
temperature, conductivity, pH, dissolved oxygen

4.0 LABORATORY MEASURED PARAMETERS

4.1 Routine Sampling Stations

Key Indicator Parameters

boron, strontium, sulphate, TDS, DOC, hardness, chloride, iron, manganese, total phosphorus


4.2 Surveillance Sampling Locations

Surveillance Parameters

calcium, magnesium, sodium, potassium, aluminum, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, total phosphorus, silicon, silver, strontium, thallium, tin, titanium, vanadium, zinc (ICP Scan) hardness (calculated from laboratory calcium and magnesium analyses) alkalinity, TDS, chloride, sulphate, nitrate, nitrite, ortho-phosphate ammonia, DOC, COD phenols unionized ammonia (calculated from laboratory ammonia and field temperature and pH)

Special Note For Parameters with Established Provincial Water Quality Criteria - All laboratory analyses on surface water samples will be performed by a private analytical laboratory and the method detection limits (MDLs) for the specific analyses should be commensurate with the standards established in the Provincial Water Quality Objectives or the Ontario Drinking Water Standards/Objectives, whichever is lower.

KEY PLAN FIGURE 1

SCALE 1: 250,000

SPECIAL NOTE
THIS DRAWING IS TO BE READ IN CONJUNCTION
WITH ACCOMPANYING REPORT

Date: Mar. 5, 2001

Project:001-2782

Drawn: ..S.L.

Chkd: P.E....

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

I.	SAMPLE TYPE	III.	SOIL DESCRIPTION	
AS	Auger sample		(a)	Cohesionless Soils
BS	Block sample			
CS	Chunk sample	Density Inc	dex	N
DO	Drive open	(Relative D		Blows/300 mm
DS	Denison type sample	`		Or Blows/ft.
FS	Foil sample	Very loose		0 to 4
RC	Rock core	Loose		4 to 10
SC	Soil core	Compact		10 to 30
ST	Slotted tube	Dense		30 to 50
TO	Thin-walled, open	Very dense	:	over 50
TP	Thin-walled, piston	-		
WS	Wash sample		(b)	Cohesive Soils
****	,	Consistenc	ey .	$C_{u2}S_{u}$
II.	PENETRATION RESISTANCE		<u>Kpa</u>	<u>Psf</u>
		Very soft	0 to 12	0 to 250
Standar	d Penetration Resistance (SPT), N:	Soft	12 to 25	250 to 500
J	The number of blows by a 63.5 kg. (140 lb.)	Firm	25 to 50	500 to 1,000
	hammer dropped 760 mm (30 in.) required	Stiff	50 to 100	1,000 to 2,000
	to drive a 50 mm (2 in.) drive open	Very stiff	100 to 200	2,000 to 4,000
	Sampler for a distance of 300 mm (12 in.)	Hard	Over 200	Over 4,000
D	a Developmentian Designation and N. s.	IV.	SOIL TESTS	•
Dynami	c Penetration Resistance; N _d : The number of blows by a 63.5 kg (140 lb.)	14.	5012 12515	
	hammer dropped 760 mm (30 in.) to drive	w	water content	
	Uncased a 50 mm (2 in.) diameter, 60° cone	w _p	plastic limited	
	attached to "A" size drill rods for a distance	W _p W ₁	liquid limit	
	of 300 mm (12 in.).	C C	consolidation (oedometer)) test
	01 500 mm (12 m.).	CHEM	chemical analysis (refer to	
PH:	Sampler advanced by hydraulic pressure	CID	consolidated isotropically	
PM:	Sampler advanced by manual pressure	CIU	consolidated isotropically	
WH:	Sampler advanced by static weight of hammer	010	with porewater pressure n	
WR:	Sampler advanced by weight of sampler and	D_R	relative density (specific g	
** 14.	rod	DS DS	direct shear test	5 3 , - s)
	100	M	sieve analysis for particle	size
Peizo-C	one Penetration Test (CPT):	MH	combined sieve and hydro	
101200	An electronic cone penetrometer with	MPC	modified Proctor compact	
	a 60° conical tip and a projected end area	SPC	standard Proctor compact	
	of 10 cm ² pushed through ground	OC	organic content test	
	at a penetration rate of 2 cm/s. Measurements	SO ₄	concentration of water-so	luble sulphates
	of tip resistance (Q_i) , porewater pressure	UC	unconfined compression t	
	(PWP) and friction along a sleeve are recorded	UU	unconsolidated undrained	
	Electronically at 25 mm penetration intervals.	V	field vane test (LV-labora	ntory vane test)
	,	γ	unit weight	

Note:

1. Tests which are anisotropically consolidated prior shear are shown as CAD, CAU.

LIST OF SYMBOLS

w

Unless otherwise stated, the symbols employed in the report are as follows:

L GENERAL

_	_	3	1 4	11
π	_	٥.	14	16

In x, natural logarithm of x

log₁₀ x or log x, logarithm of x to base 10

g acceleration due to gravity

t time

F factor of safety

V volume

W weight

IL STRESS AND STRAIN

γ shear strain

 Δ change in, e.g. in stress: $\Delta \sigma$

ε linear strain

ε_ν volumetric strain

η coefficient of viscosity

v Poisson's ratio

σ total stress

 σ' effective stress ($\sigma' = \sigma - u$)

o'vo initial effective overburden stress

σ₁,σ₂,σ₃ principal stresses (major, intermediate, minor)

 σ_{oct} mean stress or octahedral stress

 $= (\sigma_1 + \sigma_2 + \sigma_3)/3$

τ shear stress

u porewater pressure

E modulus of deformation

G shear modulus of deformation

K bulk modulus of compressibility

III. SOIL PROPERTIES

(a) Index Properties

 $p(\gamma)$ bulk density (bulk unit weight*)

 $\rho_d(\gamma_d)$ dry density (dry unit weight)

 $\rho_w(\gamma_w)$ density (unit weight) of water

 $\rho_s(\gamma_s)$ density (unit weight) of solid particles

 γ' unit weight of submerged soil ($\gamma' = \gamma - \gamma_w$)

 D_R relative density (specific gravity) of solid particles ($D_R = \rho_s / \rho_w$) (formerly G_s)

e void ratio

n porosity

S degree of saturation

* Density symbol is ρ. Unit weight symbol is γ where γ = ρg (i.e. mass density x acceleration due to gravity)

(a) Index Properties (con't.)

water content

w_l liquid limit

w_p plastic limit

plasticity Index = $(w_i - w_p)$

ws shrinkage limit

 I_L liquidity index = $(w-w_p)/I_p$

 I_C consistency index = $(w_l - w)/I_p$

e_{max} void ratio in loosest state

emin void ratio in densest state

 I_D density index = $(e_{max} - e) / (e_{max} - e_{min})$

(formerly relative density)

(c) Hydraulic Properties

h hydraulic head or potential

q rate of flow

v velocity of flow

hydraulic gradient

k hydraulic conductivity (coefficient of permeability)

j seepage force per unit volume

(d) Consolidation (one-dimensional)

C_c compression index (normally consolidated range)

C_r recompression index (overconsolidated range)

C_S swelling index

C_α coefficient of secondary consolidation

m_v coefficient of volume change

c_v coefficient of consolidation

T_v time factor (vertical direction)

U degree of consolidation

σ'_p pre-consolidation pressure

OCR Overconsolidation ratio = σ'_p/σ'_{vo}

(e) Shear Strength

 τ_p , τ_r peak and residual shear strength

φ' effective angle of internal friction

δ angle of interface friction

μ coefficient of friction = tan δ

c' effective cohesion

 c_u, s_u undrained shear strength ($\phi = 0$ analysis)

p mean total stress $(\sigma_1 + \sigma_3)/2$

p' mean effective stress $(\sigma'_1 + \sigma'_3)/2$

q $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$

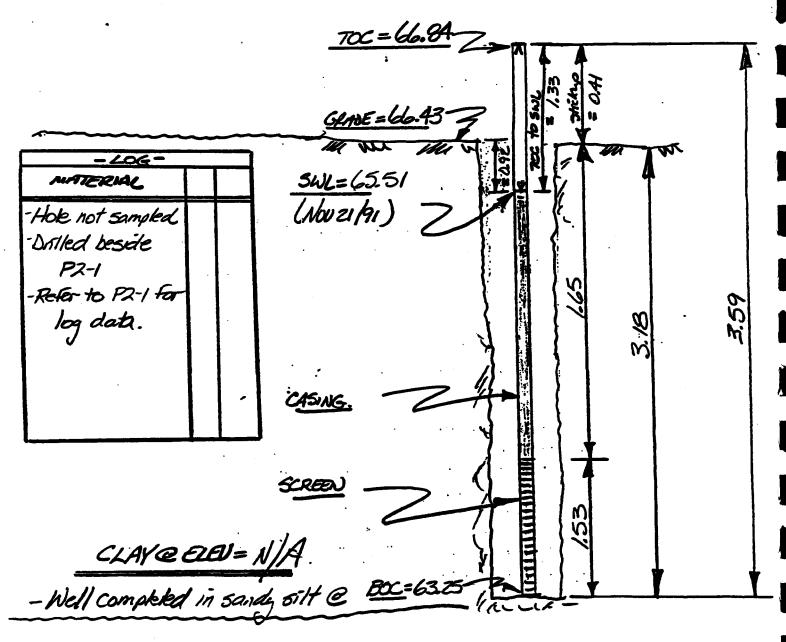
 q_u compressive strength $(\sigma_1 - \sigma_3)$

S_t sensitivity

Notes: 1. $\tau = c' + \sigma' \tan \phi'$

2. Shear strength = (Compressive strength)/2

up of Cambridge - Linges Reformeter - as built televations for : PZ-1 -Drilled Octupi.


•		TOC = 6	643 7	2008 = 0.68	· .	
Libroum-gray sand Stey sandy silt Stey silty clay Note: Sandy silt finer with clapth.	0 1.2 1.2 5.33 5.80 EIEU = 6		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	162 397 56%	230	877

OC = Top of plastic well casing, not cap!

Box: Bottom of casing (screen)

JUL = Static water kiel.

Two of Cambridge - Limoges Pletometer - as built televations for: -Drilled Oct 11/91

TOC = Top of plastic well casing, not cap!

BOC = Bottom of casing (screen)

SWL = Static walks level.

I sp of Cambridge - Linges

1 etometer - as built televations for:

-Drilled Octil91.

•			TOC = 71.01 GRAVE = 69.80	2	12,85 12,85 12,1		A
	~~	_~~			b A	_	
-406-			M W MA	13		W	
MATERIAL	m	m	3WL=64.16	T	1	4	
H-brigg sand	0	5.0	(Nouziki) Z	N A M	{{E		
ites sand silt		8.23			1		-
ity sandy silt Krey silty clay		<i>B.</i> 4				ľ	
rigality day		0,4	·		6	ļ	
	1.			}	i	ĺ	
Note: Sand selt						00	•
finer with			•	3 1	5 1	397	83
doth.		_	icasus -)		06
1			CASING.				
1				A			
		•			1-		
			SCREEN -		1.7		
				11	23		}
CIAVA	EIE	IJ-/	1.57 = 61.6	日门			
			36.07 = 66.6	川目		1	1
•			<u>BC</u> =62	2/2/39	4		
				- 1/2000	, <i>F</i> —		

- X = Top of plastic well casing, not cap!

BrC = Bottom of casing (screen)

JUL = Static water keel.

Two of Cambridge - Lingues Plezometer - as built + elevations for: P3-Z -Drilled Oct 11/91 TOC = 70,66-7 SWL=64.33 (Novzifii) the not sampled Inilled beside P3-1 -Refer to P3-1 for log data. CLAY@ OLU = N/A. -Well completed in grey sandy 51H TOC = Top of plastic well casing, not cap! BOC = Bottom of casing (screen) SWL = Static walks keel.

57ANCON 91-128

STANCON 91428 up of Cambridge - Limoges etometer - as built televations for: -Drilled Oct 9/91. 70c=70.48 Z 3WL=65.04 (Nov.zipi) Z Lt. brown med sand 0 17.88 1.98 3.50 it. brown-gry sand 350 7.93 Grey fine sandy silt 313 960 ing stilty clay Note: Sould silt finer with depth. CLAY@ OLD = 61.61 = 61.6 BX = 61.227

- De = Top of plastic well casing, not cap!

Prc = Bottom of casing (screen)

SWL = Static water tevel.

57ANCON 91428 Two of Cambridge - Lingues Metometer - as built 4 elevations for -Dirled Oct. 9/91. TOC = 70.19-

-406-	GLADE = 69.55 MINING TO SERVICE	A
- Itole not sampled - Unilled beside	SWE=65.05 (Nov. ZI/91)	
P4-1 -Refer to P4-1 -for log data	3.73	5.90
	CASING.	
<u>CLAY@EIB</u>	= N/A.	
- Well completed in gr	ey sandy Sitt BOC=64.27 Z	

TOC = Top of plastic well casing, not cap!

BOC = Bottom of casing (screen)

SWL = Static water keel.

Lup of Cambridge - Linges l'étometer - as built rélevations for -Drilled Oct. 10/91.

•		70C = 70.25 - Z		2 75	A :
-LOG- MATERIAL	m. m.	SWL= 67.23	202 TO SAUL 202	Two Two	
Red brown med sand 14-brown gry sand Cog fine sand sith Copy sith clay Note: Sandy sith finer with depth.	0 1.22 1.22 1.98 1.98 7.64 7.64 8.00	(Nov. ZI/AI) Z		764	-8.39
CLAY@	દાશ= 6	SCREEN	153 153		

PC = Top of plastic well casing, not cap!

PC = Bottom of casing (screen)

SWL = Static walks keel.

STANCON 91-128 Two of Cambridge - Lingues Metometer - as built televations for: -Drilled Oct. 10/91

•			69.99		25.00 S.7		A
-LOG- MATERIAL -Hote not sampled		<u>GRADE = 6</u> 24 WW SWL = 6721	9.42	1000 to 500 to 5	A CONTRACTOR OF THE PARTY OF TH	Two and the same of the same o	
-Dated beside P5-1 -Refer to P5-1 For log data.					3.16	4.69	5.26
	2	15MG.	24	1			
CLAYŒE	EU=N/A	<u>REN</u>	2		753		
Well completed in	grey sandy	51H <u>600</u>	=64.73 7	to II	<u> </u>		

TOC = Top of plastic well casing, not cap!

BOC = Bottom of casing (screen)

SWL = Static waks keel.

inp of Cambridge - Limoges

Etometer - as built televations for: PG-1

Inteled Oct 9/91.

•		GRADE = 6981 7	A
Topsoil, organic Red-brown med. Sand W. brown med. Sand W. brown vgry sand Fey fine Sandy sith Lacy silly clay Not. Sandy silt finer with depth.		SURE (6.80 (NOUZI/91) Z (SE. 9) SE. 9 SE.	87.52
CLAY®	EEV= (62.18 = 62.2 80c=61.937	Y

-, X = Top of plastic well casing, not cap!

ErC = Bottom of casing (screen)

SWL = Static walks kevel.

STANCON 91-128 Two of Cambridge - Lingues Metometer - as built televations for: -United Octalai

•	70C	= 70.32	2 2 8		A .
	GLADE:	-69.74 Z	10 Sec. 1		
- LOG - MATERIAL	SWL= ldb.	1:13-1		Two was	
- Hole not sampled - Dnilled beside	(Nbo. ZI/91) 2			
PG-1 Refer to PG-1			3.70		
log data.		À		4.63	12
	CASING.	24		4	77
	SCREEN _	2	53		
CLAY@EIB					
- Well completed in	gry sandy sitt.	BX=65.11/2	7/-		

TOC = Top of plastic well casing, not cap!

BOC = Bottom of casing (screen)

SWL = Static water kevel.

SPANCON 91-128 up of Cambridge - Lingues 16-tometer - as built televations for: -Drilled Octular

•		TOC = 69.01 Z	1
-LOG- MATERIAL		SWL=64.76	
Red-brown med. Sand 1.4. brown gray sand Cres sandy sitt ity sitty clay Note: Sandy sitt finer with depth.	m m 0 1.2 1.2 3.5 3.5 8.24 8.24 8.24 8.24 8.25	(Nov21/91)	953

- DC = Top of plastic well casing, not cap!

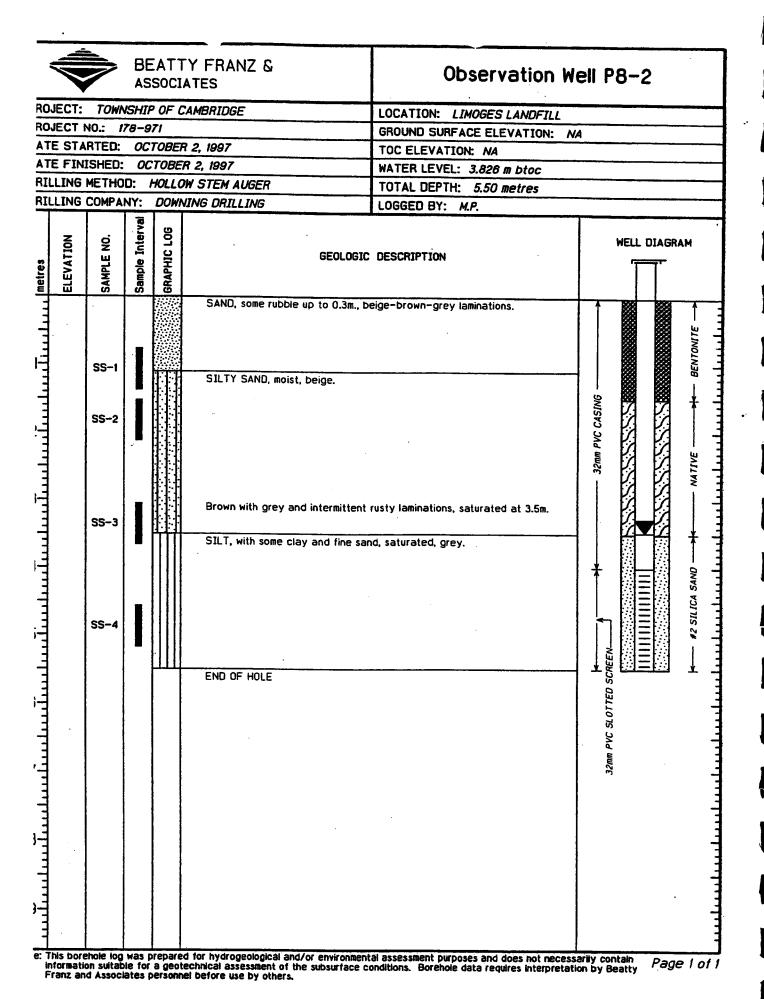
BrC = Bottom of casing (screen)

SWL = Static water tevel.

57AUCON 91428 Pézometer - as built rélevations for: -Drilled Oct 11/91

•	TOC = 68.83	> ⁄a →			
	•		8 4 8		4
	GLADE = 68.30 7	to SWL	4.30	٠	
-LOG-	M W MI W	12/2/2	1	W	
-Hote not sampled.	SWL=64.75 (Novz1/91)	型	E	*	
Drilled beside	(100 21/41)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
-Refer to P7-1		And the			
for log data.	{		R		
			A	282	55
	CASING.	-		4)	i
	4		} [
	SCREEN		1		
	- 2 A		[10]		
CLAY@ELEV=	_		15		
-Well completed in gry sai	nd 51H 80C=6248 7		1_+		

TOC = Top of plastic well casing, not cap!


BOC : Bottom of casing (screen)

SWL = Static walks keel.

	ASSO	OCIATES		servation Well	
TOWNS	SHIP C	OF CAMBRIDGE			
					
COMPAN		JOHNING DAILLING	COOCED B1. PAR	·	
SAMPLE NO.	Sample Interva	GRAPHIC LOG	SEOLOGIC DESCRIPTION		WEL L DIA GRAM
-			o 0.3m., beige-brown-grey lam	inations.	
SS-1		SILTY SAND, moist, bei	ge.		SENTONITE -
SS-2					
SS-3					NATIVE
SS-4		SILTY CLAY grey hom	ogeneous, saturated.	INC.E.	
SS-5					TTED SCREEN STANSON KBENTONITE*
SS-6					
	SS-4 SS-4 SS-5	TOWNSHIP ON THE POST OF THE PO	TOWNSHIP OF CAMBRIDGE NO.: 178-971 RTED: OCTOBER 2, 1997 ISHED: OCTOBER 2, 1997 METHOD: HOLLOW STEM AUGER COMPANY: DOWNING DRILLING SS-1 SS-1 SILTY SAND, moist, bei SS-2 SILTY SAND, moist, bei SS-3 SILTY CLAY, grey, hon SS-5	TOWNSHIP OF CAMBRIDGE NO.: 178-971 RTED: OCTOBER 2, 1997 SHED: OCTOBER 2, 1997 METHOD: HOLLOW STEM AUGER COMPANY: DOWNING DRILLING SAND, some rubble up to 0.3m., beige-brown-grey lam SS-1 SILTY SAND, moist, beige. SS-2 Brown with gery and intermittent rusty laminations, sat SILT, with some clay and fine sand, saturated, grey. SS-4 SILTY CLAY, grey, homogeneous, saturated.	TOWNSHIP OF CAMBRIDGE NO.: 178-971 GROUND SURFACE ELEVATION: MA RTED: OCTOBER 2, 1997 TOC ELEVATION: NA ISHED: OCTOBER 2, 1997 MATER LEVEL: 3,731,m bloc METHOD: HOLLOW STEM AUGER COMPANY: DOWNING DRILLING GEOLOGIC DESCRIPTION SAND, some rubble up to 0.3m., beige-brown-grey laminations. SS-1 SS-2 Brown with gery and intermittent rusty laminations, saturated at 3.5m. SS-3 SILTY SAND, moist, beige. SS-4 SILTY CLAY, grey, homogeneous, saturated.

ote: This borehole log was prepared for hydrogeological and/or environmental assessment purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by Beatty Franz and Associates personnel before use by others.

Page 1 of 1

	EATTY FRANZ &	Observation We	ell P9-1
PROJECT: TOWNSHI	IP OF CAMBRIDGE	LOCATION: LIMOGES LANDFILL	
PROJECT NO.: 178-	971	GROUND SURFACE ELEVATION: NA	
DATE STARTED: 00	CTOBER 2, 1997	TOC ELEVATION: NA	
DATE FINISHED: O	CTOBER 2, 1997	WATER LEVEL: 5.902 m btoc	
DRILLING METHOD:	HOLLOW STEM AUGER	TOTAL DEPTH: 9.10 metres	
DRILLING COMPANY:	DOWNING DRILLING	LOGGED BY: M.P.	
metres ELEVATION SAMPLE NO.	GEOFOGIO GEOFOGIO	: DESCRIPTION	WELL DIAGRAM
SS-1 2	SILTY SAND, beige to grey, mois Saturated at 5.1m. SILTY CLAY, grey, saturated. END OF HOLE		

te: This borehole log was prepared for hydrogeological and/or environmental assessment purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by Beatty Franz and Associates personnel before use by others.

PROJECT: 001-2782

RECORD OF BOREHOLE: G10-00

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: Aug. 24, 2000

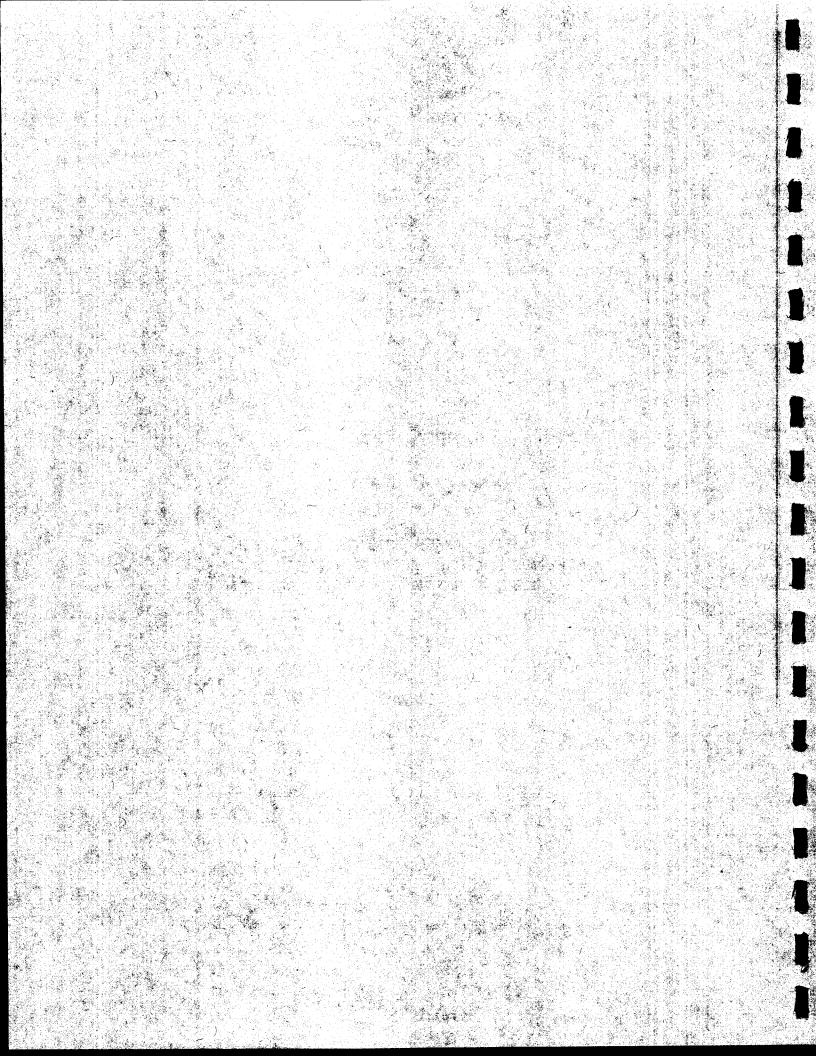
DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ב ב	QQ	SOIL PROFILE			SA	MPL	.ES	DYNAMIC PER RESISTANCE	ETRAT	10N S/0.3m	1	HYDRA	AULIC C	ONDUCT	TIVITY,	T	آ ٿ	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT		Œ		.3m	20	40	60 8	10	10) ⁻⁶ 1	0 ⁻⁵ 1	o ⁻⁴ 1	ο̂. Τ	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	E S	DESCRIPTION	Į.	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRE	NGTH	nat V. + rem V. ⊕	Q - •	ı		ONTENT	PERCE		100 E	INSTALLATION
	g		STR/	(m)	ž	-	BLO		40		10		0 4	0 6		WI 30	\ S	
_		GROUND SURFACE	+"	69.87	!	-	_	20	40 	60 8	Ĭ		9 4			1		
0	T	TOPSOIL	E	0.00		H			†								t	
		Very loose to compact brown to grey stratified fine SAND, trace to some silt		0.24												1	l	Bentonite Seal
				3	L	l									ŀ			
1				4	1	50 DO	11	:						•			1	
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		┝												l	
			,			50 DO												
2			,		2	DO	11			1					1			
				3	H													
			, ·	1	3	50 DO	3									1		
3				4	E											ļ		
			13.	1	4	50 DO	3											
				4	_						l						1	
4				65.76	5	50 DO	9											Native Backfill
		Loose grey SILTY fine SAND		4.11	Ľ	100	ا ًا				1							
	(mag			:	H	50										į		Native Backfill
5	200mm Diam (Hollow Stem)	,		1	6	50 DO	9						İ					📓
	Power Auger				F	1												
	P. P.				7	50 DO	7											■
6	000			1														
		1		1	8	50	WR											
		ĺ		1	L	100												₩
7		1		1					ł									
		Grey SILTY CLAY, occasional very thin		62.55 7.32							}							
		clayey silt seam			-	ł										l		
8					9	50 DO	РМ		ļ									
						1												Bentonite Seal
		İ						İ				1						
9									ŀ								1	Granular Filter
					10	50 DO	DNA							İ				
					Ľ	В	"								İ			38mm PVC #10 Slot Screen 1
10				3	1					1								#10 Siot
					İ							'						
	<u> </u>	END OF BOREHOLE	_88	59.20 10.67	-	ļ	-											
11																		
	ŀ												,					
				ŀ					-		1					ŀ		
12										-	}					1		
	[ŀ		
13				1														
						1							İ					
14														}				
														-				
	ļ																	
13						-												
			\perp				L		L						<u> </u>	<u></u>		
		00.45																00000 5 10
		SCALE					(F G	olde	er								OGGED: D.J.S.
1:	75							VAS	<u>soci</u>	ares							CH	ECKED: PLE

PENETRATION TEST HAMMER, 64kg; DROP, 760mm PIEZOMETER OR STANDPIPE INSTALLATION DATUM: Geodetic D.J.S. Native and Granular Filter Bentonite Seal Bentonite Seal Native Backfill Bentonite Seal Vative Backfill CHECKED: PE 38mm PVC #10 Slot Screen 2 38mm PVC #10 Slot Screen 3 SHEET 1 OF LOGGED: ADDITIONAL LAB. TESTING WATER CONTENT PERCENT
WP PERCENT HYDRAULIC CONDUCTIVITY, k, cm/s G10A-00 •0 BORING DATE: Aug. 24, 2000 د ہ 60 80 nat v. + Golder Associates RECORD OF BOREHOLE: DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m 20 40 L SHEAR STRENGTH Cu, kPa SAMPLES BLOWS/0.3m TYPE NUMBER ELEV. DEPTH (m) 000 TOJ9 ATARTS SOIL PROFILE SAMPLER HAMMER, 64kg; DROP, 760mm GROUND SURFACE For Stratigraphy, refer to Record Borehole G10-00 LOCATION: See Site Plan 001-2782 DEPTH SCALE PROJECT: 200mm Diam (Hollow Slem) **BOHING METHOD** 0 11 12 13 14 DEPTH SCALE
METRES BOBEHORE 001-5X85:GBJ CFDF_CFN:GDJ 3 2 01


A REPORT HE

REPORT OF AMALYSES ACCOPEST LABORATIONES LTD:

APPENDIX B-I - SUMMER MONITORING SESSION

APPENDIX B-II - FALL MONITORING SESSION

APPENDIX B-III - WINTER MONITORING SESSION

APPENDIX B-I SUMMER MONITORING SESSION

NOTES: SW8 = BLANK SAMPLE

		J
함 등 하수 하는 하는 것으로 보다. 50 : 10 : 10 : 10 : 10 : 10 : 10 : 10 :		Ì
		1
		Î
		J
		ħ

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. John Miller

Report Number:

Date:

2008804

Date Submitted:

2000-09-12 2000-08-09

Date Collected:

2000-08-08

Project:

001-2782

P.O. Number:

				Matrix:	я;		
1		T	82549	82550	1 00554	Surfacewate	er
PARAMETER	UNITS	MDL	SW-1	SW-2	82551	82552	82553
	1		J 311-1	3VV-2	SW-3	SW-4	SW-5
A. 0. 0. 0.	1		1	1	1	1	
Alkalinity as CaCO3	mg/L	5	141	+			
COD	mg/L	4	38	139	136	187	191
Ag	mg/L	0.0001		38	35	30	28
Al	mg/L	0.0001	,	<0.0001	<0.0001	<0.0001	<0.0001
В	mg/L	0.05	0.13	0.11	0.11	<0.05	<0.001
За	mg/L		0.05	0.04	0.05	0.04	0.05
Зе	1 -	0.01	0.04	0.05	0.04	0.05	0.05
Ca	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	
Cd Commonwealth	mg/L	1 1	42	40	39	51	<0.002
OÎ .	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	53
ço	mg/L	1	52	49	50		<0.0001
er en en en en en en en en en en en en en	mg/L	0.0001	0.0003	0.0003	0.0004	12	13
Su	mg/L	0.01	<0.01	<0.01	<0.01	0.0006	0.0006
OOC	mg/L	0.001	0.002	0.003	0.002	<0.01	<0.01
ie	mg/L	0.4	11.4	11.3	11.6	<0.001	0.001
ardness as CaCO3	mg/L	0.01	0.18	0.54		8.9	8.7
b	mg/L	1 1	150	145	0.14	0.39	0.41
lg	mg/L	0.001	<0.001	<0.001	143	173	182
g n	mg/L	1	11	11	<0.001	<0.001	<0.001
	mg/L	0.01	0.03	0.04	11	11	12
0	mg/L	0.01	<0.01	1	0.03	0.28	0.22
	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
NH3	mg/L	0.02	0.08	<0.01	<0.01	<0.01	<0.01
NO2	mg/L	0.02	<0.10	0.05	0.11	5.95	5.47
NO3	mg/L	0.10		<0.10	<0.10	<0.10	<0.10
enols	· · · · · ·	0.001	1.90	1.75	1.83	0.27	0.38
	mg/L		0.002	0.001	0.001	0.001	<0.001
		1	5	5	5	5	6
	mg/L	0.01	3.55	4.27	3.33	7.42	7.52
	mg/L	2	42	42	39	11	
		0.005	0.249	0.250	0.239	0.132	13
DL = Method Detection Limit	mg/L	_1	9	9	9	11	0.145
mment:	11	NC = Incon	nplete				12

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. John Miller

Report Number:

2008804

Date:

2000-09-12

Date Submitted: Date Collected:

2000-08-09 2000-08-08

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

			82549	82550	82551	82552	82553
PARAMETER	UNITS	MDL	SW-1	SW-2	SW-3	SW-4	SW-5
SO4 TI Sn Ti TDS Total P V Zn O-PO4	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	3 0.001 0.01 2 0.01 0.001 0.01 0.01	22 <0.001 <0.01 <0.01 272 0.17 0.003 <0.01 0.24	21 <0.001 <0.01 0.02 288 0.19 0.002 <0.01 0.26	21 <0.001 <0.01 308 0.20 0.002 <0.01 0.30	27 <0.001 <0.01 <0.01 232 0.56 0.001 <0.01 1.56	30 <0.001 <0.01 <0.01 256 0.51 0.001 <0.01 1.18

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL.

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

Report Number:

2008804

ATT: Mr. John Miller

Date:

2000-09-12

Date Submitted: Date Collected:

2000-08-09

Project:

2000-08-08 001-2782

P.O. Number:

Matrix:

Surfacewater

				mau ix.		Gunacewater	
	1		82554	82555	82556		
PARAMETER	UNITS	MDL	SW-6	SW-7	SW-8		
}	1	1	J]			
							Ì
Alkalinity as CaCO3	mg/L	5	204	514	7	1	
COD	mg/L	4	38	68	10	İ	
Ag	mg/L	0.0001	<0.0001	<0.0001	<0.0001	[Į.
Al	mg/L	0.05	<0.05	<0.05	<0.05	Į.	Į
B	mg/L	0.01	0.02	0.57	<0.01		
Ва	mg/L	0.01	0.04	0.12	<0.01	ĺ	
Ве	mg/L	0.002	<0.002	<0.002	<0.002		
Ca	mg/L	1	53	136	<1	ļ	
Cd	mg/L	0.0001	<0.0001	<0.0001	<0.0001		
CI	mg/L	1 1	11	40	<1		
Co	mg/L	0.0001	0.0006	0.0004	<0.0001		
Cr	mg/L	0.01	<0.01	<0.01	<0.01	1	
Cu	mg/L	0.001	<0.001	<0.001	<0.001		
DOC	mg/L	0.4	10.4	25.3	<0.4		
Fe	mg/L	0.01	0.21	4.15	0.03		
Hardness as CaCO3	mg/L	1 1	186	463	<1	l	
Pb	mg/L	0.001	<0.001	<0.001	<0.001		
Mg	mg/L	1 1	13	30	<1		
Mn	mg/L	0.01	0.43	1.88	<0.01		;
Мо	mg/L	0.01	<0.01	<0.01	<0.01	1	
Ni	mg/L	0.01	<0.01	<0.01	<0.01		
N-NH3	mg/L	0.02	7.07	0.34	0.15		
N-NO2	mg/L	0.10	<0.10	<0.10	<0.10		
N-NO3	mg/L	0.10	0.33	0.14	<0.10	[
Phenois	mg/L	0.001	0.002	<0.001	<0.001		
κ	mg/L	1	4	9	<1]	
Si	mg/L	0.01	8.25	10.2	<0.01		
Na	mg/L	2	11	59	<2	}	
Sr	mg/L	0.005	0.135	0.667	<0.005	•	
S	mg/L	1 _	9	10	<1		

MDL = Method Detection Limit

INC = Incomplete

Comment:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

Report Number:

2008804

ATT: Mr. John Miller

Date:

2000-09-12

Date Submitted:

2000-08-09

Date Collected:

2000-08-08

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

				matrix:		Surracewater	
			82554	82555	82556		
PARAMETER	UNITS	MDL	SW-6	SW-7	SW-8		
						į	
							İ
SO4	mg/L	3	22	22	<3		
TI	mg/L	0.001	<0.001	<0.001	<0.001	Į	
Sn	mg/L	0.01	<0.01	<0.01	<0.01		1
Ti	mg/L	0.01	<0.01	<0.01	<0.01		
TDS	mg/L	2	260	668	<2	1	l
Total P	mg/L	0.01	0.73	0.32	<0.01	1	
V	mg/L	0.001	0.002	0.001	<0.001		
Zn	mg/L	0.01	<0.01	<0.01	<0.01		
O-PO4	mg/L	0.01	2.16	<0.01	<0.01		
	9/ _	0.01	2.10	30.01	-0.01	· ·	
`							
					1	l	
]]		
						1	
					i	1	
		!			1	1	
						1	
		1				1	
			•				
					1	1	
]					
							ĺ
					1	1	
					•	J	

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPENDIX B-II

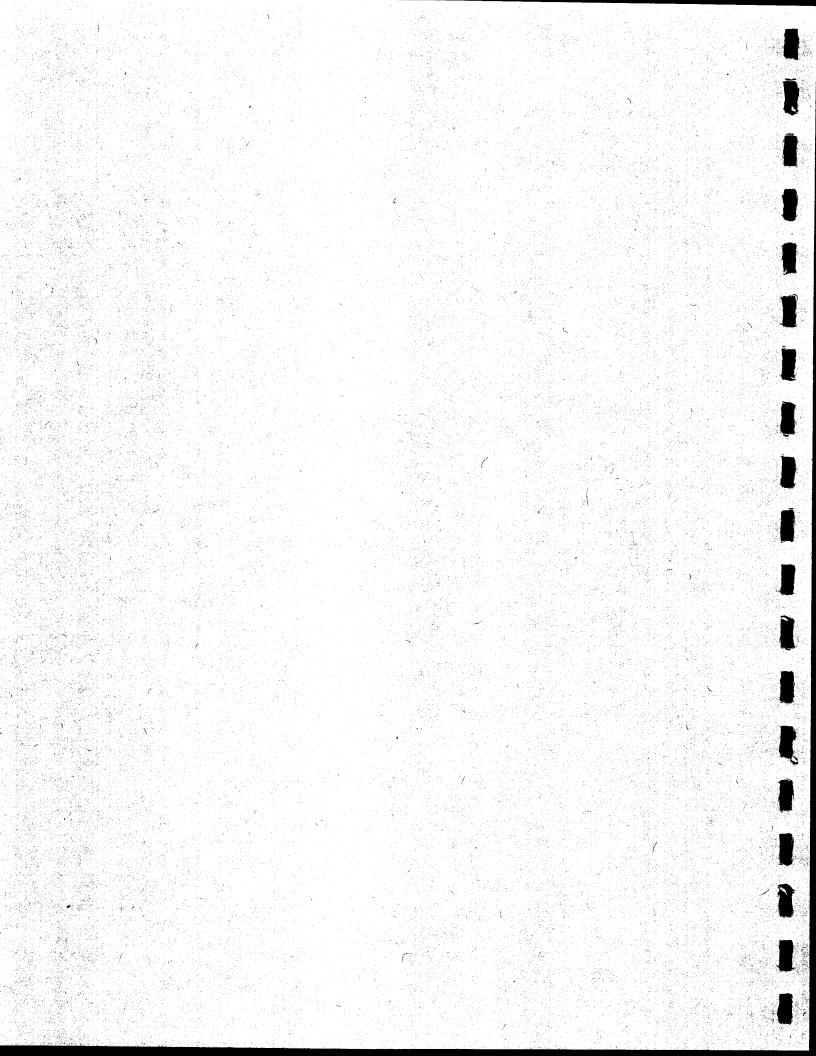
FALL MONITORING SESSION

	to 24 600 0.2 1

GW1 = P6-1 GW9 = P9-1 GW2 = P6-2 GW10 = P2-1

GW3 = P7-1 GW11 = P2-2 SW2 = SW4

P20 = BLANK SAMPLE


SW1 = SW6

GW4 = P7-2 GW12 = P5-1 SW3 = SW5

GW5 = P8-1 GW13 = P5-2 SW4 = SW1

GW6 = P8-2 GW14 = G10-3 SW5 = SW2

GW7 = P4-1 GW15 = G10-2 SW6 = SW3 GW8 = P4-2 GW16 = G10-1 5 SW7 = SW7

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012879

Date:

2000-11-22

Date Submitted: Date Collected:

2000-11-03

Project:

2000-11-03 001-2782

P.O. Number:

Matrix:

Ground Water

			97702	97703	97704	97705	97706
PARAMETER	UNITS	MDL	GW1	GW2	Gw3	GW4	GW5
			P6-1	PG-2	P7-1	P7-2	P8-1
Alkalinity as CaCO3	mg/L	5	153	18	170	60	168
COD	mg/L	4	11	11	19	5	11
Ag	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Al	mg/L	0.05	0.36	0.20	4.59	1.45	0.64
В	mg/L	0.01	<0.01	<0.01	0.08	<0.01	0.10
Ва	mg/L	0.01	0.05	<0.01	0.04	0.03	0.01
Be	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ca	mg/L	2	50	9	16	17	17
Cd	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
CI	mg/L	1 1	20	24	41	2	31
Co	mg/L	0.0002	0.0004	0.0002	0.0029	0.0010	0.0005
Cr	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cu	mg/L	0.001	<0.001	<0.001	0.007	0.004	0.002
DOC	mg/L	0.3	1.8	1.5	2.9	0.6	3.2
Fe	mg/L	0.01	1.17	0.20	4.78	1.30	0.74
Hardness as CaCO3	mg/L] 1]	179	35	89	67	100
Pb	mg/L	0.001	<0.001	<0.001	0.002	<0.001	<0.001
Mg	mg/L	1	13	3	12	6	14
Mn	mg/L	0.01	0.22	<0.01	0.12	0.03	0.02
Мо	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	0.02
Ni	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
N-NH3	mg/L	0.02	0.06	<0.02	<0.02	0.45	0.29
N-NO2	mg/L	0.1000	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	mg/L	0.10	<0.10	<0.10	0.73	<0.10	0.43
Phenois	mg/L	0.00	<0.001	<0.001	<0.001	<0.001	<0.001
PO4	mg/L	0.03	<0.03	<0.03	0.54	0.05	0.46
κ	mg/L	1.00	1	<1	5	2	6
Si	mg/L	0.01	12.0	4.04	9.52	8.05	6.13
Na	mg/L	2	10	13	69	<2	80
Sr	mg/L	0.003	0.092	0.090	0.138	0.038	0.129

MDL = Method Detection Limit

INC = Incomplete

Comment:

This is a correction certificate and supercedes all previous copies of the report. Total P and PO4 results have been changed.

APPROVAL: _

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012879

Date:

2000-11-22

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix: Ground Water

					Ground Water		
		97702	97703	97704	97705	97706	
UNITS	MDL	GW1	GW2	Gw3	GW4	GW5	
mg/L	1	25	14	6	13	46	
mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
mg/L	0.01	0.02	0.01	0.08	0.05	0.03	
mg/L	2	252	88	316	112	328	
mg/L	0.01		1.72	2.05	7.96	0.21	
mg/L	0.001	0.001	<0.001	0.011	0.004	0.004	
mg/L	0.01	<0.01	<0.01	0.01	<0.01	<0.01	
						0.46	
	1 1						
]				
	1 1						
	1			}			
ļ							
ļ							
	i						
	l i						
		-			[l	
	mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 1 mg/L 0.001 mg/L 0.01 mg/L 0.01 mg/L 2 mg/L 0.01 mg/L 0.01 mg/L 0.001 mg/L 0.001	mg/L 1 25 mg/L 0.001 <0.001	UNITS MDL 97702 97703 GW1 GW2 GW2 mg/L 1 25 14 mg/L 0.001 <0.001	UNITS MDL 97702 97703 97704 GW1 GW2 Gw3 mg/L 1 25 14 6 mg/L 0.001 <0.001	UNITS MDL 97702 97703 97704 97705 mg/L 1 25 14 6 13 mg/L 0.001 <0.001	

MDL = Method Detection Limit

Comment:

INC = Incomplete

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012879

Date:

2000-11-22

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

			97707	97708	97709	97710	97711
PARAMETER	UNITS	MDL	GW6	GW7	GW8	GW9	GW10
			P8-Z	P4-1	PA-2	P9-1	P2-1
Alkalinity as CaCO3	mg/L	5	745	628	430	64	140
COD	mg/L	4	68	57	38	16	46
Ag	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<<0.0001
Al	mg/L	0.05	0.17	0.43	0.05	3.89	2.02
В	mg/L	0.01	0.60	0.57	1.17	<0.01	0.02
Ва	mg/L	0.01	0.23	0.25	0.06	0.07	0.04
Be	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ca	mg/L	2	238	185	154	21	29
[Cd	mg/L	0.0001	0.0001	0.0001	0.0001	<0.0001	<0.0001
CI	mg/L	1	41	41	43	2	9
Co	mg/L	0.0002	0.0068	0.0051	0.0020	0.0022	0.0012
Cr	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cu	mg/L	0.001	0.082	0.006	0.009	0.005	0.001
DOC	mg/L	0.3	31.7	22.2	13.7	1.5	15.9
Fe	mg/L	0.01	0.19	1.74	0.08	3.93	2.03
Hardness as CaCO3	mg/L	1 1	743	623	476	90	122
Pb	mg/L	0.001	<0.001	<0.001	<0.001	0.002	<0.001
Mg	mg/L	1 1	36	39	22	9	12
Mn	mg/L	0.01	4.11	2.95	5.78	0.11	0.11
Мо	mg/L	0.01	0.01	<0.01	0.01	<0.01	<0.01
Ni	mg/L	0.01	0.02	0.01	<0.01	<0.01	<0.01
N-NH3	mg/L	0.02	0.03	0.12	0.04	0.12	0.37
N-NO2	mg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	mg/L	0.10	<0.10	<0.10	4.88	<0.10	<0.10
Phenois	mg/L	0.00	<0.001	<0.001	<0.001	<0.001	<0.001
K	mg/L	1.00	6	7	4	3	2
Si	mg/L	0.01	20.2	10.5	2.38	8.94	10.1
Na	mg/L	2	52	68	44	5	19
Sr	mg/L	0.003	1.18	0.806	0.682	0.055	0.105
SO4	mg/L	1	19	63	68	17	12

MDL = Method Detection Limit

INC = Incomplete

Comment:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012879

Date:

2000-11-22

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

				Matrix.		Giodila Wate	
			97707	97708	97709	97710	97711
PARAMETER	UNITS	MDL	GW6	GW7	GW8	GW9	GW10
	1						
TI	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sn	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ti	mg/L	0.01	<0.01	0.02	<0.01	0.10	0.07
TDS	mg/L	2	944	848	668	120	184
Total P	mg/L	0.01	10.9	16.3	4.84	0.06	10.1
V ·	mg/L	0.001	0.020	0.007	0.002	0.007	0.004
Zn	mg/L	0.01	<0.01	<0.01	<0.01	0.01	<0.01
O-PO4	mg/L	0.03	<0.03	<0.03	<0.03	0.18	0.11
					1		
					Ì		
	İ						
	ľ)			
				İ			
	1						
	<u> </u>						
					i	1	
]	
	1					1	
		[1		
	1				1		1
					1		

MDL = Method Detection Limit

INC = Incomplete

Comment:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

Report Number:

2012879

ATT: Mr. Andrew Harwood

Date:

2000-11-22

Date Submitted: Date Collected:

2000-11-03

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

				Wati IA.	Oldaria 11	
	T		97712	97713		
PARAMETER	UNITS	MDL	GW11	GW12		
77.00			62-2	P5-1		
Alkalinity as CaCO3	mg/L	5	594	86		
COD	mg/L	4	11	8		
Ag	mg/L	0.0001	<0.0001	<0.0001	}	
Al	mg/L	0.05	0.40	0.48		
В	mg/L	0.01	0.19	<0.01		
Ва	mg/L	0.01	0.23	0.01] [
Ве	mg/L	0.002	<0.002	<0.002	Ì	
Ca	mg/L	2	215	19	1	
Cd	mg/L	0.0001	<0.0001	<0.0001		
CI	mg/L	1	14	7	i i	
Co	mg/L	0.0002	0.0007	0.0004	1	
Cr	mg/L	0.01	<0.01	<0.01		
Cu	mg/L	0.001	<0.001	0.002	1	
DOC	mg/L	0.3	2.3	2.0	{	
Fe	mg/L	0.01	0.97	0.51		1
Hardness as CaCO3	mg/L	1	760	76		
Pb	mg/L	0.001	<0.001	<0.001		
Mg	mg/L	1	54	7	!	
Mn	mg/L	0.01	0.28	<0.01	i i	
Mo	mg/L	0.01	<0.01	<0.01	1 1	
Ni	mg/L	0.01	<0.01	<0.01	1 1	
N-NH3	mg/L	0.02	0.36	0.37	! 1	İ
N-NO2	mg/L	0.1	<0.10	<0.10	1	
N-NO3	mg/L	0.10	<0.10	<0.10		. 1
Phenois	mg/L	0.00	<0.001	<0.001		
	mg/L	1.00	4	3		1
K e:	mg/L	0.01	6.82	7.73		
Si	mg/L	2	10	22		
Na S-	mg/L	0.003	0.621	0.058		
Sr	1 -	1	174	19		
SO4	mg/L	<u> </u>	117			

MDL = Method Detection Limit

INC = Incomplete

Comment:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012879

Date:

2000-11-22

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

PARAMETER					7710261 7741		Ground Trace	<u> </u>
PARAMETER UNITS MDL GW11 GW12 TI mg/L 0.001 <0.001 <0.001 Sn mg/L 0.01 <0.01 <0.01 Ti mg/L 0.01 0.03 0.02 TDS mg/L 2 880 160 Total P mg/L 0.01 15.6 0.27				97712	97713			
TI mg/L 0.001 <0.001	PARAMETER	UNITS	MDL	GW11	GW12			
Sn mg/L 0.01 <0.01 <0.01 Ti mg/L 0.01 0.03 0.02 TDS mg/L 2 880 160 Total P mg/L 0.01 15.6 0.27		ſ		Ī	ĺ	İ	ľ	
Sn mg/L 0.01 <0.01 <0.01 Ti mg/L 0.01 0.03 0.02 TDS mg/L 2 880 160 Total P mg/L 0.01 15.6 0.27			ļ	!			ł	
Sn mg/L 0.01 <0.01 <0.01 Ti mg/L 0.01 0.03 0.02 TDS mg/L 2 880 160 Total P mg/L 0.01 15.6 0.27	TI	ma/l	0.001	<0.001	<0.001		 	
TDS mg/L 2 880 160 Total P mg/l 0.01 15.6 0.27	Sn						1	
TDS mg/L 2 880 160 Total P mg/l 0.01 15.6 0.27	Ti	mg/L	0.01	0.01	0.07			
Total P mg/l 0.01 15.6 0.27	ITOS	ma/L	0.01	0.03		1	ļ	
Total P		IIIg/L			0.07			
Zn	IV.	I mg/L	0.01		0.27			
O-PO4 mg/L 0.01 <0.01 0.04 0.10 0.10 0.10 0.10 0.10 0.10	<u> V</u>	mg/L	0.001		0.002	ł		· .
O-PO4 mg/L 0.03 <0.03 0.10	Zn .	mg/L	0.01					i l
	O-PO4	mg/L	0.03	<0.03	0.10			
					ļ			1
						ŀ		
]							
]		Ĭ	
	ł		1		J	J	1	
	ł		l				į.	}
		1					1	
	Ì						1	
	1	1					ì	}
		1						
]]						
			·					i
	1					ļ]	
								1
								1
	ł)
	-							
	[[1	

MDL = Method Detection Limit

INC = Incomplete

Comment:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012879

Date:

2000-11-17

Date Submitted: Date Collected:

2000-11-03

Project:

2000-11-03

001-2782

P.O. Number:

Matrix:

Ground Water

97708 97709	
PARAMETER LINITS MDI GW7 GW8	
I I TOTALLE I ONLO I MOL I OTTO I	l l
BTEX / 624 / PURGEABLE HYDROCARBONS	
Benzene µg/L 0.5 0.8 <0.5	
Toluene µg/L 0.5 <0.5 <0.5	
Ethylbenzene µg/L 0.5 <0.5 <0.5	
m/p-Xylene μg/L 1.0 <1.0 <1.0	
o-Xylene µg/L 0.5 <0.5 <0.5	
Bromodichloromethane µg/L 0.3 <0.3 <0.3	
Bromoform μg/L 0.4 <0.4 <0.4	1
Bromomethane µg/L 0.5 <0.5 <0.5	
Carbon Tetrachloride µg/L 0.9 <0.9 <0.9	
Monochlorobenzene μg/L 0.2 <0.2 <0.2	
Chloroethane µg/L 1.0 <1.0 <1.0	}
Chloroform μg/L 0.5 <0.5 <0.5	
Chloromethane μg/L 1.0 <1.0 <1.0	
Dibromochloromethane µg/L 0.3 <0.3 <0.3	
1,2-Dibromoethane µg/L 1.0 <1.0 <1.0	
1,2-Dichlorobenzene µg/L 0.4 <0.4 <0.4	
1,3-Dichlorobenzene µg/L 0.4 <0.4 <0.4	
1,4-Dichlorobenzene µg/L 0.4 <0.4 <0.4	1
1,1-Dichloroethane µg/L 0.4 <0.4 <0.4	
1,2-Dichloroethane µg/L 0.7 <0.7 <0.7	
1,1-Dichloroethylene µg/L 0.5 <0.5 <0.5	
c-1,2-Dichloroethylene µg/L 0.4 6.0 <0.4	
t-1,2-Dichloroethylene µg/L 0.4 <0.4 <0.4	
1,2-Dichloropropane μg/L 0.7 <0.7 <0.7	
c-1,3-Dichloropropylene µg/L 0.2 <0.2 <0.2	
t-1,3-Dichloropropylene µg/L 0.2 <0.2 <0.2	
Dichloromethane µg/L 4.0 <4.0 <4.0	
Styrene μg/L 0.5 <0.5 <0.5	
1,1,1,2-Tetrachloroethane µg/L 0.6 <0.6 <0.6	

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL: APPROVAL: Mai Shup

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012879

Date:

2000-11-17

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

			97708	97709			
PARAMETER	UNITS	MDL	GW7	GW8			
1,1,2,2-Tetrachloroethane	μg/L	0.6	<0.6	<0.6			
Tetrachioroethylene	µg/L	0.3	<0.3	<0.3			
1,1,1-Trichloroethane	µg/L	0.4	<0.4	<0.4			
1,1,2-Trichloroethane	µg/L	0.4	<0.4	<0.4			
Trichlorethylene	µg/L	0.3	<0.3	<0.3			
Trichlorofluoromethane	µg/L	0.5	<0.5	<0.5			
1,3,5-Trimethylbenzene	μg/L	0.3	<0.3	<0.3			
Vinyl Chloride	μg/L	0.5	<0.5	<0.5		,	
BTEX / 624 Surrogate Recoveri	es						
Toluene-d8	%		88	89			
1,2-Dichloroethane-d4	%		113	117			
4-Bromofluorobenzene	%		110	110			:
					'		
					l .	l	
i						Ì	
l :				l	1	I	i i

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012880

Date:

2000-11-17

Date Submitted:

2000-11-03

Date Collected: Project:

2000-11-03 001-2782

P.O. Number:

Matrix:

Ground Water

				Mau IX.		Ground water	
]	97715	97716	97717		
PARAMETER	UNITS	MDL	GW 14	GW 15	GW 16		
BTEX / 624 / PURGEABLE HYD	ROCARBO	ONS					
Benzene	μg/L	0.5	<0.5	<0.5	<0.5		
Toluene	μg/L	0.5	<0.5	<0.5	<0.5		
Ethylbenzene	μg/L	0.5	<0.5	<0.5	<0.5		
m/p-Xylene	μg/L	1.0	<0.5	<0.5	<0.5		
o-Xylene	μg/L	0.5	<0.5	<0.5	<0.5		
Bromodichloromethane	μg/L	0.3	<0.3	<0.3	<0.3		
Bromoform	μg/L	0.4	<0.4	<0.4	<0.4		
Bromomethane	μg/L	0.5	<0.5	<0.5	<0.5		
Carbon Tetrachloride	µg/L	0.9	<0.9	<0.9	<0.9		
Monochlorobenzene	μg/L	0.2	<0.2	<0.2	<0.2		
Chloroethane	μg/L	1.0	<1.0	<1.0	<1.0		
_ Chloroform	μg/L	0.5	0.7	1.3	1.0		
Chloromethane	µg/L	1.0	<1.0	<1.0	<1.0		
Dibromochloromethane	μg/L	0.3	<0.3	<0.3	<0.3		
1,2-Dibromoethane	μg/L	1.0	<0.5	<0.5	<0.5		
1,2-Dichlorobenzene	µg/L	0.4	<0.4	<0.4	<0.4		
1,3-Dichlorobenzene	µg/L	0.4	<0.4	<0.4	<0.4		
1,4-Dichlorobenzene	μg/L	0.4	<0.4	<0.4	<0.4		
1,1-Dichloroethane	µg/L	0.4	<0.4	<0.4	<0.4		
1,2-Dichloroethane	μg/L	0.7	<0.7	<0.7	<0.7		
1,1-Dichloroethylene	μg/L	0.5	<0.5	<0.5	<0.5	ļ	
c-1,2-Dichloroethylene	μg/L	0.4	<0.4	<0.4	<0.4		
t-1,2-Dichloroethylene	μg/L	0.4	<0.4	<0.4	<0.4		
1,2-Dichloropropane	μg/L	0.7	<0.7	<0.7	<0.7		
c-1,3-Dichloropropylene	μg/L	0.2	<0.2	<0.2	<0.2		
t-1,3-Dichloropropylene	μg/L	0.2	<0.2	<0.2	<0.2		
Dichloromethane	μg/L	4.0	<4.0	<4.0	<4.0	j ·	
Styrene	µg/L	0.5	<0.5	<0.5	<0.5		
1,1,1,2-Tetrachloroethane	μg/L	0.6	<0.6	<0.6	<0.6		

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012880

Date:

2000-11-17

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

			97715	97716	97717		
PARAMETER	UNITS	MDL	GW 14	GW 15	GW 16	-	• "
						:	
1,1,2,2-Tetrachloroethane	µg/L	0.6	<0.6	<0.6	<0.6		
Tetrachloroethylene	µg/L	0.3	<0.3	0.3	<0.3		
1,1,1-Trichloroethane	µg/L	0.4	<0.4	<0.4	<0.4		
1,1,2-Trichloroethane	μg/L	0.4	<0.4	<0.4	<0.4		
Trichlorethylene	µg/L	0.3	<0.3	<0.3	<0.3		
Trichlorofluoromethane	µg/L	0.5	<0.5	<0.5	<0.5		
1,3,5-Trimethylbenzene	μg/L	0.3	<0.3	<0.3	<0.3		
Vinyl Chloride	µg/L	0.5	<0.5	<0.5	<0.5	*	
BTEX / 624 Surrogate Recover	es						
Toluene-d8	%		89	89	88		
1,2-Dichloroethane-d4	%		120	120	124		
4-Bromofluorobenzene	%		109	109	109		
	İ						
•							
	İ						
						Ì	
						1	
			1				
1							
1	ľ	1			I	1	

MDL = Method Detection Limit

INC = Incomplete

Comment:

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012880

Date:

2000-11-21

Date Submitted: Date Collected:

2000-11-03 2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

			97714	97715	97716	97717	97718
PARAMETER	UNITS	MDL	GW13	GW 14	GW 15	GW 16	P20
			P5-2	910-00-3	5-00-5	G10-00-1	blank.
Alkalinity as CaCO3	mg/L	5	31	95	80	100	<5
COD	mg/L	4	11	8	11	11	5
Ag	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Al	mg/L	0.05	1.37	1.78	1.78	3.56	<0.05
В	mg/L	0.01	0.02	<0.01	<0.01	0.03	<0.01
Ba	mg/L	0.01	0.02	0.03	0.04	0.04	<0.01
Be	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ca	mg/L	2	12	6	23	18	<2
Cd	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
CI	mg/L	1	<1	5	4	16	<1
Co	mg/L	0.0002	0.0008	0.0014	0.0011	0.0022	<0.0002
Cr	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cu	mg/L	0.001	<0.001	0.006	0.002	0.005	<0.001
DOC	mg/L	0.3	3.2	1.7	1.1	1.8	<0.3
Fe	mg/L	0.01	1.42	1.46	1.72	3.65	<0.01
Hardness as CaCO3	mg/L	1	42	19	86	74	<1
Pb	mg/L	0.001	<0.001	0.001	<0.001	0.001	<0.001
Mg	mg/L	1	3	1	7	7	<1
Mn	mg/L	0	0.07	0.04	0.09	0.12	<0.01
Мо	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ni	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
N-NH3	mg/L	0.02	0.03	0.18	0.24	0.21	0.04
N-NO2	mg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	mg/L	0.10	2.15	3.02	<0.10	<0.10	<0.10
Phenois	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
K	mg/L	1	2	1	2	4	<1
Si	mg/L	0.01	9.78	6.41	9.49	9.97	<0.01
Na	mg/L	2	5	40	8	35	<2
Sr	mg/L	0.003	0.071	0.027	0.063	0.079	<0.003
SO4	mg/L	1	9	17	25	27	<1

MDL = Method Detection Limit

Comment:

APPROVAL: 1. Sau L

INC = Incomplete

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012880

Date:

2000-11-21

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Ground Water

							~
			97714	97715	97716	97717	97718
PARAMETER	UNITS	MDL	GW13	GW 14	GW 15	GW 16	P20
1	1	1)	J	<u> </u>		
π	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sn Ti			0.05	0.04	0.06	0.08	<0.01
TDS	mg/L	0.01			144	256	<2
	mg/L	2	76	180			
Total P	mg/L	0.01	0.04	0.15	0.30	0.18	<0.01
V	mg/L	0.001	0.003	0.010	0.003	0.006	<0.001
Zn	mg/L	0.01	<0.01	0.01	<0.01	0.01	<0.01
O-PO4	mg/L	0.03	0.05	0.28	0,05	0.20	<0.03
1	İ	1					
	Ì	1	ł		1		
1	- 1	1		4			
			ļ				
		1	İ	i	ì		ļ
	1	ĺ				ł	•
J		ł					
	[Ì		ł
					Ì		Ĭ
			ĺ			ľ	
ļ	J		ļ		İ		
		[·		ĺ	1		
į							
			j	ļ			
				1			
	1			J			
	1			J			
				j	}		
	ı	1		I	1	l	ì

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL: 1. Con

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012808

ciit. Coldei Associates Etd.

Date:

2000-11-24

Date Submitted: Date Collected:

2000-11-03

Project:

2000-11-01

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

	T	T	07450	07400	07404	Surfacewater	
DADAMETED			97459	97460	97461		
PARAMETER	UNITS	MDL	SW-1	SW-2	SW-3		
	ł		5006	5W 4	5w ≤		
Alkalinity as CaCO3	mg/L	5	148	156	163		
COD	mg/L	4	22	17	30		
Ag	mg/L	0.0001	<0.0001	<0.0001	<0.0001		
Al	mg/L	0.05	<0.05	<0.05	<0.05		
В	mg/L	0.01	<0.01	0.03	0.05		
Ba	mg/L	0.01	0.02	0.03	0.05		
Be	mg/L	0.002	<0.002	<0.002	<0.002		
Ca	mg/L	2	39	44	47		
Cd	mg/L	0.0001	<0.0001	<0.0001	<0.0001		
CI	mg/L	1	2	4	7	• 1	
Co	mg/L	0.0002	0.0003	<0.0002	0.0008		
Cr	mg/L	0.01	<0.01	<0.01	<0.01		
Cu	mg/L	0.001	<0.001	<0.001	0.002		
DOC	mg/L	0.3	4.5	5.6	6.8		
Fe	mg/L	0.01	0.06	0.96	2.14		
Hardness as CaCO3	mg/L] 1	151	155	171]	
Pb	mg/L	0.001	<0.001	<0.001	<0.001	1	
Mg	mg/L	1 1	13	11	13		
Mn	mg/L	0.01	0.03	0.07	0.28		
Мо	mg/L	0.01	<0.01	0.01	<0.01		
Ni	mg/L	0.01	<0.01	<0.01	<0.01		
N-NH3	mg/L	0.02	0.70	0.31	0.35		
N-NO2	mg/L	0.10	<0.10	<0.10	<0.10		
N-NO3	mg/L	0.10	<0.10	<0.10	0.20	[
Phenois	mg/L	0.001	<0.001	<0.001	<0.001		
lk	mg/L	1 1	1	2	4		
Si	mg/L	0.01	7.59	7.51	7.59		
Na	mg/L	2	4	9	10		
Sr	mg/L	0.003	0.085	0.101	0.127		
SO4	mg/L	1	10	16	21		

MDL = Method Detection Limit

Comment:

INC = Incomplete

APPROVAL: J. Meleu C

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

Report Number:

2012808

ATT: Mr. Andrew Harwood

Date:

2000-11-24

Date Submitted:

2000-11-03

Date Collected:

2000-11-01

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

				Wall IX.		Surfacewater	
			97459	97460	97461		
PARAMETER	UNITS	MDL	SW-1	SW-2	SW-3		
)						Į.	
		i			Ì	1	
TI	mg/L	0.001	<0.001	<0.001	<0.001		
					<0.001		
Sn	mg/L	0.01	<0.01	<0.01			
Ti	mg/L	0.01	<0.01	<0.01	0.02	[
TDS	mg/L	2	216	248	256	1	
Total P	mg/L	0.01	0.01	0.09	0.25		İ
V	mg/L	0.001	<0.001	0.002	0.003	1	
Zn	mg/L	0.01	<0.01	<0.01	<0.01	1	
O-PO4	mg/L	0.03	<0.03	<0.03	<0.03	1	ļ
0-1-0-1	mg/L	0.00	40.00	-0.00	10.00		
[<u> </u>			}	·	j j
						Ì	
į		•			i	ł	
J					į		
					1		
		,			1	İ	
·]					j		
		'				· L	
		1				j	j
ľ						1	
		(Į.		
ļ					ĺ		
1		[1	1
]						Į.	
					1		
							1
					1		
					ļ	1	
					L		

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL: 1. Nau/

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012881

Date:

2000-11-29

Date Submitted: Date Collected:

2000-11-03 2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

	1		97719	97720	97721	97722	
PARAMETER	UNITS	MDL	SW4	SW5	SW6	SW7	
	}		ا ليڪ	5.W2	೯⊍≗	5007	
All-plinits on CoCC			200	202	474		
Alkalinity as CaCO3	mg/L	5	228	223	171	534]
COD	mg/L	4	38	35	21	45	
Ag	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	į
Al	mg/L	0.05	0.31	<0.05	<0.05	1.08	1
В	mg/L	0.01	0.03	0.03	0.03	0.57	
Ва	mg/L	0.01	0.06	0.06	0.05	5.17	}
Ве	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	
Ca	mg/L	2	66	66	64	142	
Cd	mg/L	0.0001	<0.0001	<0.0001	<0.0001	0.0003	1
CI	mg/L	1 1	104	104	96	43	
Co	mg/L	0.0002	0.0003	0.0002	<0.0002	0.0029	ļ
Cr	mg/L	0.01	<0.01	<0.01	<0.01	0.01	
Cu	mg/L	0.001	0.001	<0.001	<0.001	0.011	
DOC	mg/L	0.3	7.5	7.9	7.4	16.9	}
Fe	mg/L	0.01	0.41	0.41	0.41	47.4	
Hardness as CaCO3	mg/L	1	260	256	246	487	
Pb	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	
Mg	mg/L	1 1	23	22	21	32	
Mn	mg/L	0	0.04	0.04	0.04	29.8	
Мо	mg/L	0.01	< 0.01	<0.01	<0.01	<0.01	
Ni	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	
N-NH3	mg/L	0.02	0.04	0.03	0.08	0.85	
N-NO2	mg/L	0.10	<0.10	<0.10	<0.10	<0.10	
N-NO3	mg/L	0.10	1.39	1.37	1.27	0.46	
Phenois	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	
Κ	mg/L	1	4	4	4	8	
Si	mg/L	0.01	3.52	3.60	3.77	26.7	
Na	mg/L	2	71	66	63	63	
Sr	mg/L	0.003	0.380	0.380	0.356	3.02	
SO4	mg/L	1	30	30	29	27	
MDI - Mathed Detection Limit		INIC - Inc	loto				

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL: 1. New ?

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012881

Golder Associates Ltd.

Date:

2000-11-29

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

			97719	97720	97721	97722	
PARAMETER	UNITS	MDL	SW4	SW5	SW6	SW7	
TI	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	
Sn	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	
Ti	mg/L	0.01	0.01	0.02	0.01	<0.01	
TDS	mg/L	2	472	464	388	680	
Total P	mg/L	0.01	0.06	0.03	0.02	0.02	l l
V	mg/L	0.001	0.002	<0.001	<0.001	0.002	
Zn	mg/L	0.01	<0.01	<0.01	<0.01	0.09	
O-PO4	mg/L	0.03	<0.03	<0.03	<0.03	<0.03	
Conductivity	mg/L	5			1	1080	
pH	ļ	l	ļ			7.44	
]	ĺ						
				1			i
			1	1			
	1					ļ	
							j
	1			İ			
		1					
					l		
	l						
	ļ						
		1					
			1				
1						1	
				1			
		1					
	L	1		l			

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL: I. Wellen M

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012881

Date:

2000-11-17

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

				Matrix:	Surfacewater
			97719	97721	
PARAMETER	UNITS	MDL	SW4	SW6	
	ł			1	
					<u> </u>
BTEX / 624 / PURGEABLE H	YDROCARBO	ONS			
Benzene	μg/L	0.5	<0.5	<0.5	
Toluene	μg/L	0.5	<0.5	<0.5	
Ethylbenzene	μg/L	0.5	<0.5	<0.5	
m/p-Xylene	μg/L	1.0	<1.0	<1.0	1 1
o-Xylene	μg/L	0.5	<0.5	<0.5	
Bromodichloromethane	μg/L	0.3	<0.3	<0.3	
Bromoform	µg/L	0.4	<0.4	<0.4	
Bromomethane	µg/L	0.5	<0.5	<0.5	
Carbon Tetrachloride	μg/L	0.9	<0.9	<0.9	
Monochlorobenzene	µg/L	0.2	<0.2	<0.2	
Chloroethane	µg/L	1.0	<1.0	<1.0	
Chloroform	μg/L	0.5	2.1	<0.5	
Chloromethane	µg/L	1.0	<1.0	<1.0	
Dibromochloromethane	µg/L	0.3	<0.3	<0.3	
1,2-Dibromoethane	μg/L	1.0	<1.0	<1.0	
1,2-Dichlorobenzene	µg/L	0.4	<0.4	<0.4	
1,3-Dichlorobenzene	μg/L	0.4	<0.4	<0.4	
1,4-Dichlorobenzene	µg/L	0.4	<0.4	<0.4	
1,1-Dichloroethane	μg/L	0.4	<0.4	<0.4	
1,2-Dichloroethane	µg/L	0.7	<0.7	<0.7	
1,1-Dichloroethylene	µg/L	0.5	<0.5	<0.5	
c-1,2-Dichloroethylene	μg/L	0.4	<0.4	<0.4	
t-1,2-Dichloroethylene	µg/L	0.4	<0.4	<0.4	
1,2-Dichloropropane	µg/L	0.7	<0.7	<0.7	
c-1,3-Dichloropropylene	µg/L	0.2	<0.2	<0.2	
t-1,3-Dichloropropylene	µg/L	0.2	<0.2	<0.2	
Dichloromethane	µg/L	4.0	<4.0	<4.0	
Styrene	µg/L	0.5	<0.5	<0.5	
1,1,1,2-Tetrachloroethane	μg/L	0.6	<0.6	<0.6	

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPROVAL: APPROVAL: Naithur

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2012881

Date:

2000-11-17

Date Submitted:

2000-11-03

Date Collected:

2000-11-03

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

				Matrix:		Sunacewater	
			97719	97721			
PARAMETER	UNITS	MDL	SW4	SW6			
						·	
1,1,2,2-Tetrachioroethane	µg/L	0.6	<0.6	<0.6			
Tetrachloroethylene	μg/L	0.3	<0.3	<0.3			
1,1,1-Trichloroethane	μg/L	0.4	<0.4	<0.4			
1,1,2-Trichloroethane	µg/L	0.4	<0.4	<0.4			
Trichlorethylene	μg/L	0.3	<0.3	<0.3			
Trichlorofluoromethane	μg/L	0.5	<0.5	<0.5			
1,3,5-Trimethylbenzene	μg/L	0.3	<0.3	<0.3			
Vinyl Chloride	μg/L	0.5	<0.5	<0.5			
BTEX / 624 Surrogate Recover	ies						
Toluene-d8	%		89	88			
1,2-Dichloroethane-d4	%		128	120			i
4-Bromofluorobenzene	%		110	110			
	"	1					
	ļ]					
					!		ļ
]	j					
	1					·	
	ļ	}				<u>.</u>	
· I	ļ		,				
j	ļ						
	1						
]					
1	1					ĺ	
			}				
				1			
1			1			1	
· I	1	1	[1	[(

MDL = Method Detection Limit

INC = Incomplete

Comment:

APPENGIX B-III. WINTER MONITORING SESSION

A. T. T. T. T. T. T. T. T. T. T. T. T. T.					
7 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
		7			
	1				
				3.	
44 2.755 47 194 3.86 (4.755)					
					.1
10 mm					· . 1
			12.5°		
	*				

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

Report Number:

2015118

Date:

2001-01-11

ATT: Mr. Andrew Harwood

Date Submitted: Date Collected:

2000-12-27 2000-12-23

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

			106889				<u> </u>
PARAMETER	UNITS	MDL	SW3				·
)	ŀ		Ì	1			
					<u> </u>	<u></u>	
Alkalinity as CaCO3	mg/L	5	165				
COD	mg/L	4	45				}
Ag	mg/L	0.0001	<0.0001				
AĬ B	mg/L	0.05	0.38	}	}]
B	mg/L	0.01	0.02	ļ]	
Ва	mg/L	0.01	0.05			1	
Be	mg/L	0.002	<0.002	ĺ		ł	Ì
Ca	mg/L	2	48				
Cd	mg/L	0.0001	<0.0001		}		
CI	mg/L	1	97				
Co	mg/L	0.0002	0.0005				
Cr	mg/L	0.01	<0.01				
Cu	mg/L	0.001	0.002				
DOC	mg/L	0.3	9.2			†	
Fe	. mg/L	0.01	0.61				
Hardness as CaCO3	mg/L	1	182			<u> </u>	
Pb	mg/L	0.001	<0.001				
Mg	mg/L	1	15				
Mn	mg/L	0.01	0.15				
Мо	mg/L	0.01	<0.01				
Ni	mg/L	0.01	<0.01				
N-NH3	mg/L	0.02	0.20				
N-NO2	mg/L	0.10	<0.10				
N-NO3	mg/L	0.10	1.36				
Phenois	mg/L	0.001	<0.001				
Κ	mg/L	1	3				
Si	mg/L	0.01	4.73				
Na	mg/L	2	61				
Sr	mg/L	0.003	0.330				
SO4	mg/L	1	28		:		

MDL = Method Detection Limit

Comment:

INC = Incomplete

APPROVAL: L. Sou / C

REPORT OF ANALYSIS

Client: Golder Associates Ltd.

ATT: Mr. Andrew Harwood

Report Number:

2015118

it. Golder Associates Etd.

Date:

2001-01-11

Date Submitted: Date Collected:

2000-12-27 2000-12-23

Project:

001-2782

P.O. Number:

Matrix:

Surfacewater

				watin.	 	
		1	106889			
PARAMETER	UNITS	MDL	SW3			
TI Sn Ti	mg/L	0.001	<0.001			
Sn	mg/L	0.01	<0.01			
lti	mg/L	0.01	0.01			
TDS	mg/L	2	404			
Total D	""g/L	0.04	0.05			
Total P	mg/L	0.01	0.05	Ī		
V	mg/L	0.001	0.002	1		
Zn	mg/L	0.01	<0.01			
O-PO4	mg/L	0.03	0.05			
	1				:	
]						
		1				
		ŀ				
		1	ł	1		
İ	1				i	
	,					
	İ					
	İ					
		•				
†						
!						
						1
	1		İ			
	- 1					
1	1	1				
•	1					
1		i				
	1				1	
	- 1	i	I		 L	

MDL = Method Detection Limit

Comment:

INC = Incomplete

APPROVAL: & Kan

APPENDIXIC

RESULTS OF FIELD AND LABORATORY CHEMICAL AND PHYSICAL ANALYSES

APPENDIX C-I - GROUNDWATER MONTIORS

APPENDIX C-II - SURFACE WATER SAMPLING STATIONS

			S. W.					
				4.4				
								i - 📟
0,0								'. U
								_
		(1985년 - 1987년 - 1985 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985						
							2.	
					프라이아를 했다면 있다. 그리지를 높고 있어서 되지			
								. • 🔞
	**							
			i e					
							1.	
						4		
				1. 11일 12일 1. 1123주				. 8
9005				3 18 and Maria				

APPENDIX GA

GROUNDWATER MONITCHS

			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	1			
		(6)		
				1
				. · · · ·]
				- 1
		en general en en en en en en en en en en en en en		

LIST CIT ABBRITY LATIONS

The abbreviations commonly employed on the "Chemical and Physical Analyses Data Sheets", on the figures, in the tables and in the text of the report as related to the water quality monitoring programs are as follows:

ODWS/O Ontario Drinking Water Standards (Ministry of the Environment,

2000)

PWQO Provincial Water Quality Objective (Ministry of the Environment, 1994b)

(Reprint 1999)) (Includes Interim PWQO also)

N nitrogen
P phosphorus
CaCO₃ calcium carbonate

C degrees Celsius

micros/cm micros/emens per centimetre
NTU Nephelometric Turbidity Unit

TCU True Colour Unit

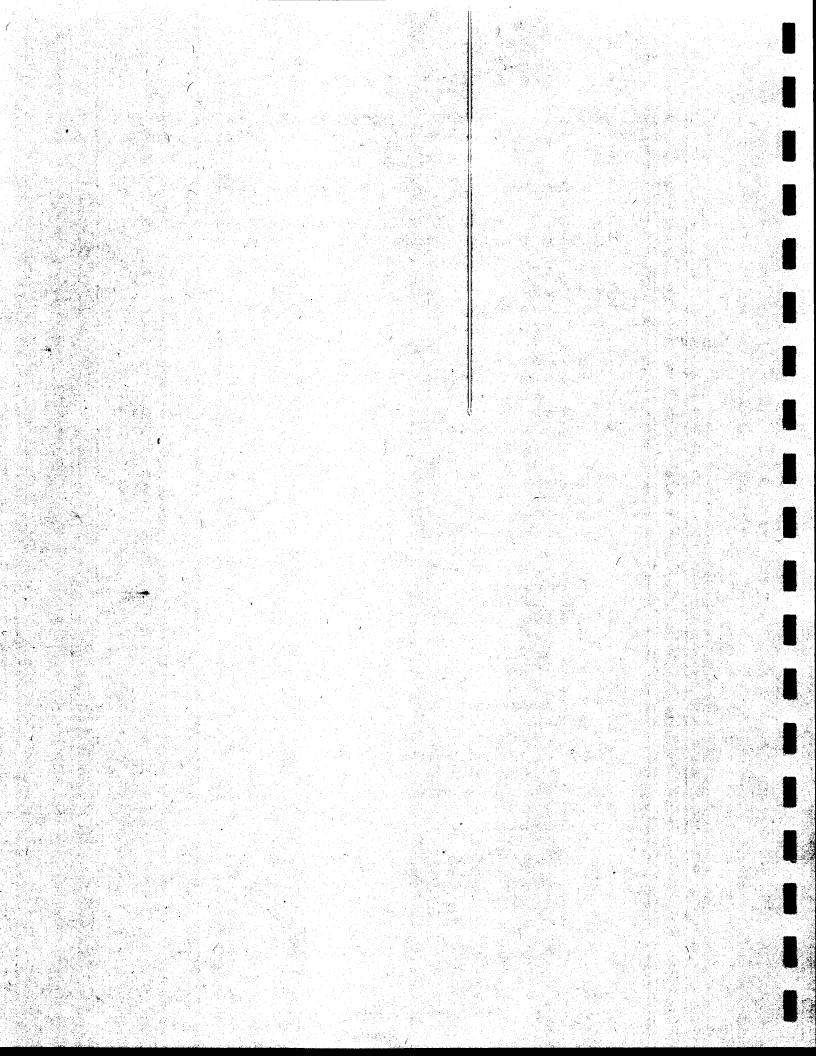
mL millilitre

mg/L milligrams per litre ppm parts per million

COND. conductivity
DIS. OXYGEN dissolved oxygen
TKN total kjeldahl nitrogen
BOD biochemical oxygen demand
COD chemical oxygen demand
DOC dissolved organic carbon
EC Escherichia coli

EC Escherichia coli TOC total organic carbon TS total solids

TSS total suspended solids
TDS total dissolved solids
TC total coliform


FC fecal coliform
FS fecal streptococcus
BKGD background

f (Alk) PWQO related to alkalinity of surface water
f (Hardness) PWQO related to hardness of surface water
f (Temp) PWQO related to temperature of surface water

f (pH,Temp) PWQO related to pH and temperature of surface water

f (pH) PWQO related to pH of surface water

See Ministry of Environment and Bacagy (2000) for marrative guideline

Golder Associates

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P2-1						Sheet: 1
Date Sampled:		19-Nov-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
Parameter	ODWS/O					
Alkalinity (CaCO3)	30-500	126	111	105	136	123
Aluminum	0.1		0.130	0.080	<0.030	<0.030
Ammonia (as N)			0.14	0.19	0.53	0.30
Antimony			<0.1000	<0.1000		
Arsenic	0.025	<0.001	<0.100	<0.100		
Barium	1	0.990	0.017	0.015	<0.010	0.020
Beryllium			<0.001	<0.001	<0.010	<0.010
Bicarbonate Bismuth			-0.400	1.00		
Boron	_	0.440	<0.100	<0.100	.0.040	
Bromide	5	0.110	0.030	0.020	<0.010	<0.010
Cadmium	0.005	<0.00500	0.05 <0.00500	<0.50	40 00E00	-0.00500
Calcium	0.005	21.0	23.7	<0.00500 22.8	<0.00500 26.0	<0.00500
Carbonate		21.0	135.20	125.60	20.0	25.0
Chloride	250	7.2	10.9	7.2	8.0	8.0
Chromium	0.05	0.510	<0.005	<0.005	<0.010	<0.010
Cobalt	0.00	0.010	<0.0050	<0.0050	<0.0100	<0.010
COD		39	6	9	10	<3
Colour (TCU)	5	451	116	2030	10	-0
Conductivity (uS/cm)	-	244	267	249	150	240
Copper	1	0.5100	0.0050	<0.0030	<0.0050	<0.0050
Cyanide	0.2	0.100				0.000
DOC	5	1.8	1.7	1.0	2.5	1.9
Fluoride	1.5	0.30	0.30	<0.10		
Hardness (CaCO3)	80-100		94	93	110	104
Hydrogen Sulphide	0.05	<0.02				
Iron	0.3	236.00	0.05	0.15	0.05	0.03
Lead	0.01	0.2400			<0.0020	<0.0020
Magnesium			8.53	8.79	11.00	10.00
Manganese	0.05	4.440	0.044	0.061	0.060	0.060
Mercury	0.001	<0.0001				
Molybdenum		0.000	<0.010	<0.010	<0.010	<0.010
Nickel	40	0.060	<0.020	<0.020	<0.010	<0.010
Nitrate (as N) Nitrite (as N)	10 1	<0.10 0.06	0.09 <0.02	<0.20 <0.20	0.10	<0.10
Organic Nitrogen	0.15	<0.10	<0.02	<0.20	<0.10	<0.10
pH (pH units)	6.5-8.5	7.5	8.2	8.0	7.8	7.2
Phenois	0.5-0.5	<0.002	0.2	0.0	<0.001	<0.001
Phosphate (as P)		40.002	<0.10	<1.00	0.27	0.13
Phosphorus (total)		0.24	0.97	6.40	8.38	0.15
Potassium			3.0	<1.0	3.0	3.0
Selenium		<0.001	<0.100	<0.100		0.0
Silicon					7.70	8.00
Silver		<0.0500	<0.0030	0.0050	<0.0100	0.0200
Sodium	200	23.0	25.3	15.1	20.0	21.0
Strontium			0.083	0.068	0.085	0.085
Sulphate	500	16.4	16.6	16.2	10.0	10.0
Sulphur			6	5	5	4
TDS	500	364	155	134	176	148
Temperature (C)	15				8.5	9.5
Thallium Tin			<0.050	<0.0E0	<0.20000	<0.50000
Tin Titanium			<0.050	<0.050	<0.050	<0.050
TOC		2	<0.005	0.006	<0.010	<0.010
Turbidity (NTU)	1	2 306.0	67.0	49.0		
Vanadium	•	300.0	<0.0050	<0.0050	<0.0100	<0.0100
Zinc	5	0.610	0.019	<0.005	<0.0100	<0.0100
	-	2.2.2			-0.0.0	-0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P2-1				Sheet: 2
Date Sampled:		19-Oct-1999	03-Nov-2000	
Parameter	ODWS/O			
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	128 <0.030 0.27	140 2.020 0.37	
Arsenic Barium Beryllium Bicarbonate Bismuth	0.025 1	NA <0.010	0.040 <0.002	
Boron Bromide	5	NA	0.020	
Cadmium Calcium Carbonate	0.005	<0.00500 24.0	<0.00010 29.0	
Chloride Chromium Cobalt COD	250 0.05	7.0 <0.010 <0.0100 8	9.0 <0.010 0.0012 46	
Colour (TCU)	5	195	383	
Conductivity (uS/cm) Copper	1	<0.0050	0.0010	
Cyanide DOC	0.2 5	2.3	15.9	
Fluoride Hardness (CaCO3)	1.5 80-100	97	122	
Hydrogen Sulphide Iron	0.05 0.3	0.02	2.03	
Lead Magnesium	0.01	<0.0020 9.00	<0.0010 12.00	
Manganese Mercury	0.05 0.001	0.050	0.110	
Molybdenum Nickel		<0.010 <0.010	<0.010 <0.010	
Nitrate (as N)	10	0.18	<0.10	
Nitrite (as N) Organic Nitrogen	1 0.15	<0.10	<0.10	
pH (pH units) Phenols	6.5-8.5	8.2 <0.001	7.6 <0.001	
Phosphate (as P) Phosphorus (total)		0.51 2.91	0.11 10.10	
Potassium Selenium Silicon		3.0 8.30	2.0	
Silver	•••	<0.0100	0.0001	
Sodium Strontium	200	20.0 0.089	19.0 0.105	
Sulphate Sulphur	500	8.0 3	12.0 4	
TDS Temperature (C)	500 15	156 3.0	184 9.5	
Thallium Tin Tin Titanium	13	<0.20000 <0.050 <0.010	<0.00100 <0.010 0.070	
TOC Turbidity (NTU)	1	-0.010	5.5. 0	
Vanadium Zinc	1 5	<0.0100 <0.010	0.0040 <0.010	

Golder Associates

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P2-2						Sheet: 1
Date Sampled:		19-Nov-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
Parameter	ODWS/O					
Alkalinity (CaCO3) Aluminum	30-500 0.1	104	121 0.360	194 0.060	211 <0.030	235 <0.030
Ammonia (as N) Antimony	•		0.03 <0.1000	0.06 <0.1000	0.39	0.09
Arsenic Barium	0.025 1	<0.001 4.080	<0.100 0.079	<0.100 0.076	0.080	0.110
Beryllium Bicarbonate	'	4.000	<0.001	<0.001 1.00	<0.010	<0.010
Bismuth	_		<0.100	<0.100		
Boron Bromide	5	0.070	0.040 <0.05	0.200 <0.50	0.150	0.030
Cadmium Calcium	0.005	<0.00500 31.0	<0.00500 36.4	<0.00500 63.5	<0.00500 71.0	<0.00500 88.0
Carbonate Chloride	250	5.4	147.30 3.7	234.10 3.3	12.0	31.0
Chromium	0.05	0.210	<0.005	<0.005	<0.010	<0.010
Cobalt COD		24	<0.0050 <5	<0.0050 10	<0.0100 19	<0.0100 40
Colour (TCU) Conductivity (uS/cm)	5	278 2 44	4 281	1010 440	255	410
Copper Cyanide	1 0.2	0.1600 0.020	<0.0030	<0.0030	<0.0050	<0.0050
DÓC	5	4.2	1.3	3.0	8.0.	19.2
Fluoride Hardness (CaCO3)	1.5 80-100	0.24	<0.10 134	<0.10 232	255	314
Hydrogen Sulphide Iron	0.05 0.3	<0.02 97.00	0.49	0.32	0.06	0.17
Lead Magnesium	0.01	0.0800	10.40	17.80	<0.0020 19.00	<0.0020 23.00
Manganese	0.05	2.230	0.050	0.650	0.050	0.090
Mercury Molybdenum	0.001	<0.0001	<0.010	<0.010	<0.010	<0.010
Nickel Nitrate (as N)	10	<0.050 <0.01	<0.020 <0.02	<0.020 <0.20	<0.010 0.10	<0.010 <0.10
Nitrite (as N) Organic Nitrogen	1 0.15	0.01 <0.10	<0.02	<0.20	<0.10	<0.10
pH (pH units) Phenols	6.5-8.5	7.6 <0.002	7.9	7.8	7.7 <0.001	6.9 0.040
Phosphate (as P)			<0.10	<1.00	0.15	<0.01
Phosphorus (total) Potassium		0.28	0.33 2.0	28.00 2.0	16.90 3.0	2.0
Selenium Silicon		<0.001	<0.100	<0.100	4.80	6.90
Silver Sodium	200	<0.0500 5.0	<0.0030 6.2	0.0050 4.9	<0.0100 14.0	0.0200 7.0
Strontium Sulphate	500	46.0	0.063 23.3	0.102 42.5	0.119 55.0	0.154 21.0
Sulphur TDS	500	148	8 155	15 250	16	8
Temperature (C)	15	140	155	250	320 8.0	348 11.0
Thallium Tin			<0.050	<0.050	<0.20000 <0.050	<0.50000 <0.050
Titanium TOC		6	0.018	<0.005	<0.010	<0.010
Turbidity (NTU) Vanadium	1	143.0	3.6 0.0090	2.0 <0.0050	0.0200	<0.0100
Zinc	5	0.320	<0.005	<0.005	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P2-2			
Date Sampled:		19-Oct-1999	03-Nov-2000
Parameter	ODWS/O		
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	289 <0.030 0.08	594 0.400 0.36
Arsenic Barium Beryllium Bicarbonate	0.025 1	NA <0.010	0.230 <0.002
Bismuth Boron	5	NA	0.190
Bromide Cadmium Calcium Carbonate	0.005	<0.00500 87.0	<0.00010 215.0
Chloride Chromium Cobalt COD	250 0.05	26.0 <0.010 <0.0100 54	14.0 <0.010 0.0007 11
Colour (TCU) Conductivity (uS/cm) Copper Cyanide	5 1 0.2	350 <0.0050	1400 <0.0010
DOC Fluoride	5 1.5	18.0	2.3
Hardness (CaCO3) Hydrogen Sulphide	80-100 0.05	312	760
Iron Lead	0.3 0.01	0.06 <0.0020	0.97 <0.0010
Magnesium Manganese Mercury	0.05 0.001	23.00 0.070	54.00 0.280
Molybdenum Nickel Nitrate (as N)	10	<0.010 <0.010 <0.10	<0.010 <0.010 <0.10
Nitrite (as N) Organic Nitrogen	1 0.15	<0.10	<0.10 6.7
pH (pH units) Phenols Phosphate (as P) Phosphorus (total) Potassium Selenium	6.5-8.5	7.5 0.038 <0.03 0.88 2.0	<0.001 <0.03 15.60 4.0
Silicon Silver Sodium	200	6.30 <0.0100 9.0	6.82 <0.0001 10.0
Strontium Sulphate Sulphur	500	0.180 19.0 7	0.621 174.0 58
TDS Temperature (C) Thallium Tin Titanium TOC	500 15	356 5.0 <0.20000 <0.050 <0.010	880 9.9 <0.00100 <0.010 0.030
Turbidity (NTU) Vanadium Zinc	1 5	<0.0100 <0.010	0.0070 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P3-1						Sheet: 1
Date Sampled:		31-Oct-1991	14-May-1999	02-Sep-1999	19-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O					
Alkalinity (CaCO3) Aluminum	30-500 0.1	274	50 0.030	NS	NS	DRY
Ammonia (as N)			0.34			
Arsenic	0.025	0.008	0.050			
Barium	1	0.460	0.050 <0.010			
Beryllium Boron	5	0.170	0.130			
Cadmium	0.005	<0.00500	<0.00500			
Calcium	0.000	92.0	21.0			
Chloride	250	165.0	21.0			
Chromium	0.05	<0.050	<0.010			
Cobalt			<0.0100			
COD	-	23	14			
Colour (TCU) Conductivity (uS/cm)	5	11 1057	160			
Copper	1	0.1100	<0.0050			
Cyanide	0.2	<0.005	0.0000			
DOC	5	5.0	3.9			
Fluoride	1.5	0.50				
Hardness (CaCO3)	80-100		73			
Hydrogen Sulphide	0.05	<0.02	0.05			
Iron Lead	0.3 0.01	14.10 0.1100	<0.0020			
Magnesium	0.01	0.1100	5.00			
Manganese	0.05	1.600	0.180			
Mercury	0.001	<0.0001				
Molybdenum			<0.010			
Nickel	40	0.070	<0.010			
Nitrate (as N) Nitrite (as N)	10 1	1.39 0.01	0.55 <0.10			
Organic Nitrogen	0.15	<0.10	~0.10			
pH (pH units)	6.5-8.5	7.4	6.0			
Phenois		<0.002	<0.001			
Phosphate (as P)			<0.03			
Phosphorus (total) Potassium		2.09	8.91			
Selenium		<0.001	6.0			
Silicon		~0.00 1	5.40			
Silver		<0.0500	<0.0100			
Sodium	200	56.0	17.0			
Strontium			0.191			
Sulphate	500	72.0	48.0			
Sulphur TDS	500	624	14 160			
Temperature (C)	15	024	10.0			
Thallium	,,,		<0.20000			
Tin			<0.050			
Titanium		_	<0.010			
TOC	4	7				
Turbidity (NTU) Vanadium	1	2.2	<0.0100			
Zinc	5	0.380	<0.0100			
	•	0.000	.0.0.0			

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P3-2						Sheet: 1
Date Sampled:		31-Oct-1991	21-Apr-1998	14-May-1999	02-Sep-1999	19-Oct-1999
Parameter	ODWS/O					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	116	81 0.750 <0.02 <0.1000	NS	NS	NS
Arsenic Barium Beryllium Bicarbonate Bismuth	0.025 1	0.008 0.750	<0.100 0.048 <0.001 1.00 <0.100			
Boron Bromide	5	0.080	0.170 <0.50			
Cadmium Calcium Carbonate	0.005	0.00600 69.0	<0.00500 25.1 96.30			
Chloride Chromium	250 0.05	238.0 <0.050	12.5 <0.005			
Cobalt COD	E	6	<0.0050 18			
Colour (TCU) Conductivity (uS/cm) Copper	5 1	7 1010 0.0800	7640 264 <0.0030			
Cyanide DOC	0.2 5	<0.005 1.9	3.1			
Fluoride Hardness (CaCO3)	1.5 80-100	0.59	<0.10 86			
Hydrogen Sulphide Iron	0.05 0.3	<0.02 8.78	0.27			
Lead Magnesium	0.01	<0.0500	5.56			
Manganese Mercury Molybdenum	0.05 0.001	1.880 <0.0001	0.357 0.010			
Nickel Nitrate (as N)	10	<0.050 2.68	<0.020 0.60			
Nitrite (as N) Organic Nitrogen	1 0.15	<0.01 0.28	<0.20			
pH (pH units) Phenols Phenols	6.5-8.5	7.2 <0.002	6.3			
Phosphate (as P) Phosphorus (total) Potassium		1.02	<1.00 46.00 4.0			
Selenium Silver Sodium	200	<0.001 <0.0500 91.0	<0.100 0.0050 16.5			
Strontium Sulphate	500	72.0	0.224 31.4			
Sulphur TDS Tin Titanium	500	564	11 144 <0.050 0.020			
TOC Turbidity (NTU)	1	10 1.9	1.3			
Vanadium Zinc	5	<0.050	<0.0050 <0.005			

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P3-2

Date Sampled: 03-Nov-2000

<u>Parameter</u>	ODWS/O	
Alkalinity (CaCO3)	30-500	DRY
Aluminum	0.1	
Ammonia (as N)		
Antimony		
Arsenic	0.025	
Barium	1	
Beryllium	•	
Bicarbonate		
Bismuth		
Boron	5	
Bromide	•	
Cadmium	0.005	
Calcium	0.000	
Carbonate		
Chloride	250	
Chromium	0.05	
Cobalt	0.00	
COD		
	5	
Colour (TCU) Conductivity (uS/cm)	3	
	1	
Copper	0.2	
Cyanide		
DOC	5 1.5	
Fluoride		
Hardness (CaCO3)	80-100	
Hydrogen Sulphide	0.05	
Iron	0.3	
Lead	0.01	
Magnesium		
Manganese	0.05	
	0.001	
Molybdenum		
Nickel		
Nitrate (as N)	10	
Nitrite (as N)	1	
Organic Nitrogen	0.15	
pH (pH units)	6.5-8.5	
Phenois		
Phosphate (as P)		
Phosphorus (total)		
Potassium		
Selenium		
Silver		
Sodium	200	
Strontium		
Sulphate	500	
Sulphur		
TDS	500	
Tin		
Titanium		
TOC		
Turbidity (NTU)	1	
Vanadium		
Zinc	5	

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P4-1						Sheet: 1
Date Sampled:		31-Oct-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
Parameter	ODWS/O					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	30-500 0.1 0.025	258	660 0.210 0.16 <0.1000	681 0.760 0.17 <0.1000	555 <0.030 0.23	585 <0.030 0.23
Barium Bicarbonate Bismuth	1	0.016 0.490	<0.100 0.258 <0.001 <0.100	<0.100 0.263 <0.001 1.00 <0.100	0.220 <0.010	0.230 <0.010
Boron Bromide	5	0.490	0.430 0.50	0.560 <0.50	0.810	0.570
Cadmium Calcium Carbonate	0.005	<0.00500 91.0	<0.00500 188.0 804.50	<0.00500 229.0 827.90	<0.00500 209.0	<0.00500 189.0
Chloride Chromium Cobalt COD	250 0.05	143.0 <0.050 12	100.0 <0.005 0.0070 84	93.8 <0.005 <0.0050 74	61.0 <0.010 <0.0100 71	51.0 <0.010 <0.0100 56
Colour (TCU) Conductivity (uS/cm) Copper	5 1	4 1030 0.0600	16 1450 0.0030	1480 1550 0.0090	1000 <0.0050	900 <0.0050
Cyanide DOC	0.2 5	<0.005 7.2	24.0	24.9	26.0	29.9
Fluoride Hardness (CaCO3) Hydrogen Sulphide	1.5 80-100 0.05	0.48 <0.02	<0.10 657	<0.10 766	682	620
Iron Lead	0.3 0.01	10.60 0.0800	1.39	1.55	0.85 <0.0020	0.55 <0.0020
Magnesium Manganese Mercury	0.05 0.001	1.210 <0.0001	45.50 3.630	46.50 5.840	39.00 4.440	36.00 3.780
Molybdenum Nickel Nitrate (as N)	10	<0.050 <0.01	<0.010 <0.020 <0.02	<0.010 <0.020 <0.20	<0.010 <0.010 <0.10	<0.010 <0.010 <0.10
Nitrite (as N) Organic Nitrogen pH (pH units)	1 0.15 6.5-8.5	<0.01 <0.10 7.7	<0.20 6.9	<0.20 6.9	<0.10 6.7	<0.10 6.9
Phenols Phosphate (as P)	0.3-0.3	<0.002	<0.10	<1.00	<0.001	<0.001 <0.01
Phosphorus (total) Potassium Selenium		2.92 <0.001	0.03 5.0 <0.100	40.00 5.0 <0.100	2.04 6.0	6.0
Silicon Silver Sodium	200	<0.0500 44.0	<0.0030 69.4	0.0070 74.5	10.10 <0.0100 73.0	9.60 0.0200 75.0
Strontium Sulphate Sulphur	500	117.0	0.885 80.5 55	1.110 143.0 48	0.970 110.0 30	0.834 91.0 28
TDS Temperature (C) Thallium	500 15	624	885	1001	948 12.0 <0.20000	772 12.0 <0.50000
Tin Titanium TOC		9	<0.050 0.011	<0.050 0.006	<0.050 <0.010	<0.050 <0.010
Turbidity (NTU) Vanadium Zinc	1	2.4	2.4 0.0060	1.6 <0.0050	<0.0100	<0.0100
	5	<0.050	<0.005	<0.005	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P4-1			
Date Sampled:		19-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
Alkalinity (CaCO3) Aluminum	30-500	575 0.080	628
Ammonia (as N)	0.1	0.080	0.430 0.12
Antimony		0.11	0.12
Arsenic	0.025		
Barium	1	NA	0.250
Beryllium		<0.010	<0.002
Bicarbonate			
Bismuth	-	NIA	0.570
Boron Bromide	5	NA	0.570
Cadmium	0.005	<0.00500	0.00010
Calcium	0.000	164.0	185.0
Carbonate			
Chloride	250	47.0	41.0
Chromium	0.05	<0.010	<0.010
Cobalt		<0.0100	0.0051
COD	5	65	57
Colour (TCU) Conductivity (uS/cm)	5	680	1370
Copper	1	<0.0050	0.0060
Cyanide	0.2	0.000	
DOC	5	22.2	22.2
Fluoride	1.5		
Hardness (CaCO3)	80-100	533	623
Hydrogen Sulphide	0.05	0.50	4.74
iron Lead	0.3 0.01	0.56 <0.0020	1.74 <0.0010
Magnesium	0.01	30.00	39.00
Manganese	0.05	3.070	2.950
Mercury	0.001	5.5.5	
Molybdenum		<0.010	<0.010
Nickel		<0.010	0.010
Nitrate (as N)	10	<0.10	<0.10
Nitrite (as N)	1 0.15	<0.10	<0.10
Organic Nitrogen pH (pH units)	6.5-8.5	6.7	6.4
Phenois	0.0-0.0	<0.001	<0.001
Phosphate (as P)		<0.03	< 0.03
Phosphorus (total)		2.48	16.30
Potassium		5.0	7.0
Selenium		40.40	40.50
Silicon Silver		10.10 <0.0100	10.50 <0.0001
Sodium	200	68.0	68.0
Strontium	200	0.801	0.806
Sulphate	500	77.0	63.0
Sulphur		26	21
TDS	500	804	848
Temperature (C)	15	4.0	10.2
Thallium Tin		<0.20000 <0.050	<0.00100 <0.010
Titanium		<0.030	0.020
TOC		-0.010	J
Turbidity (NTU)	1		
Vanadium		<0.0100	0.0070
Zinc	5	0.250	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P4-1			
Date Sampled:		19-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	14 200 5		<0.60 <0.40 <0.60 <0.40 <0.5000 <1.00 <0.40 <0.700
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane	5 5		<0.30 <0.40 <0.400 0.8000 <0.300 <0.400 <0.500
c-1,3-Dichloropropylene Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethylene	5 80		<0.20 <0.900 <0.200 <1.0 <0.50 <1.000 6.00
Dibromochloromethane Ethylbenzene m/p-Xylene Methylene Chloride o-Xylene Styrene t-1,2-Dichloroethylene t-1,3-Dichloropropylene Tetrochloroethylene	2.4 300 50 300		<0.30 <0.5000 <1.000 <4.00 <0.500 <0.50 <0.4000 <0.20 <0.30
Toluene Trichloroethylene Trichlorofluoromethane Vinyl Chloride	24 50 2		<0.5000 <0.30 <0.50 <0.500

All VOC's reported in $\mu\text{g/L}.$ All other values reported in mg/L unless otherwise noted.

Golder Associates

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Date Sampled:	Sample Source: P4-2						Sheet: 1
Alkalinity (CaCO3)	Date Sampled:		31-Oct-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
Aluminium	<u>Parameter</u>	ODWS/O					
Ammonia (as N) Antimony Antimony Antimony Antimony Antimony Antimony Antimony Antimony Arsenic 0.025 0.012 0.0100 0.059 0.095 0.090 0.070 0.070 Beryllium Bismuth Bismuth Boron 5 0.420 1.040 1.130 1.350 1.090 Bromide 0.005 0.0070 Cadrium 0.005 0.00700 Calcium 17.0 118.0 219.0	Alkalinity (CaCO3)		88				
Arsenic		0.1					
Arsenic 0.025 0.012 < 0.0100 < 0.0100						0.79	0.15
Barlum		0.025	0.012				
Bernium						0.090	0.070
Bismuth		•	555				
Bismuth	•			5.55.		0.0.0	0.070
Bromide	Bismuth			<0.100			
Cadrium	Boron	5	0.420	1.040	1.130	1.350	1.090
Calcium	Bromide				<0.50		
Carbonate		0.005					
Chloride			17.0			181.0	219.0
Chromium							
Cobalt							
COD 8 62 76 48 88 Colour (TCU) 5 7 10 2390 1000 950 Conductivity (uS/cm) 300 1005 1460 1000 950 Copper 1 0.0600 0.0070 0.0130 <0.0050		0.05	<0.050				
Colour (TCU) 5 7 10 2390 Conductivity (uS/cm) 300 1005 1460 1000 950 Copper 1 0.0600 0.0070 0.0130 <0.0050 0.0060 Cyanide 0.2 <0.005 Copper 1 0.0600 0.0070 0.0130 <0.0050 0.0060 Cyanide 0.2 <0.005 Copper 1 0.0600 0.0070 0.0130 <0.0050 Copper 0.0060 Cyanide 0.2 <0.005 Copper 0.0060 Cyanide 0.2 Copper 0.0060 Cyanide 0.5 4.3 14.8 24.0 20.4 20.9 Copper							
Conductivity (uS/cm)		_				48	88
Copper 1 0.0600 0.0070 0.0130 <0.0550 0.0060 Cyanide 0.2 <0.005		5				1000	050
Cyanide DOC 0.2 <0.005 DOC 5 4.3 14.8 24.0 20.4 20.9 Fluoride 1.5 0.32 <0.10		1					
DOC Fluoride 5 4.3 14.8 24.0 20.4 20.9 Fluoride Hardness (CaCO3) 80-100 30.32 <0.10				0.0070	0.0150	٠٥.0050	0.0000
Fluoride				14.8	24.0	20.4	20.9
Hardness (CaCO3)							
Hydrogen Sulphide 0.05 <0.02	Hardness (CaCO3)			366	549	563	675
Lead 0.01		0.05	<0.02				
Magnesium 17.80 25.80 27.00 31.00 Manganese 0.05 0.320 5.740 3.700 3.790 9.810 Mercury 0.001 <0.0001	Iron			0.04	0.10	0.08	0.02
Manganese Mercury 0.05 0.320 5.740 3.700 3.790 9.810 Mercury 0.001 <0.0001	Lead	0.01	<0.0500				
Mercury Molybdenum	•						
Molybdenum Nickel <0.010 <0.010 <0.010 <0.010 <0.010 Nickel <0.050	•			5.740	3.700	3.790	9.810
Nickel		0.001	<0.0001	-0.040	40.040	-0.040	-0.040
Nitrate (as N) 10 0.35 0.06 0.70 0.59 <0.10 Nitrite (as N) 1 <0.01 <0.20 <0.20 <0.10 <0.10 Organic Nitrogen PH (pH units) 6.5-8.5 7.2 7.1 6.9 6.9 7.0 Phenols			<0.0E0				
Nitrite (as N) 1 < <0.01 <0.20 <0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.000 <0.001 <0.001 <0.000 <0.001 <0.001 <0.000 <0.001 <0.000 <0.001 <0.000 <0.001 <0.000 <0.001 <0.000 <0.001 <0.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.		10					
Organic Nitrogen pH (pH units) 0.15 <0.10 6.9 6.9 7.0 Phenols <0.002							
pH (pH units) 6.5-8.5 7.2 7.1 6.9 6.9 7.0 Phenols <0.002		-		70.20	40.20	~0.10	~0.10
Phenols				7.1	6.9	6.9	7.0
Phosphate (as P)		5.5 5.5	<0.002	• • •			
Potassium Selenium	Phosphate (as P)			<0.10	<1.00	<0.03	
Selenium <0.001 <0.100 <0.100 Silicon 1.80 2.00 Silver <0.0500	Phosphorus (total)		6.23	0.77	21.00	8.05	
Silicon 1.80 2.00 Silver <0.0500	Potassium					9.0	3.0
Silver <0.0500 <0.0030 0.0030 <0.0100 0.0200 Sodium 200 42.0 70.2 128.0 82.0 78.0 Strontium 1.120 1.390 1.080 1.240 Sulphate 500 48.0 92.9 120.0 108.0 69.0 Sulphur 30 41 29 22 TDS 500 164 592 916 716 800 Temperature (C) 15 11.0 11.0 11.0 11.0 11.0 11.0 11.0 0.20000 <0.50000			<0.001	<0.100	<0.100		
Sodium 200 42.0 70.2 128.0 82.0 78.0 Strontium 1.120 1.390 1.080 1.240 Sulphate 500 48.0 92.9 120.0 108.0 69.0 Sulphur 30 41 29 22 TDS 500 164 592 916 716 800 Temperature (C) 15 11.0 11.0 11.0 11.0 11.0 11.0 11.0 0.200000 0.0500000 0.00000 0.0500000 0.050000 0.0500 0.0500 0.050 0.050 0.010 0.010 0.010 0.010 0.010 0.010 0.0100							
Strontium 1.120 1.390 1.080 1.240 Sulphate 500 48.0 92.9 120.0 108.0 69.0 Sulphur 30 41 29 22 TDS 500 164 592 916 716 800 Temperature (C) 15 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 0.200000 0.200000 0.500000 0.000000 0.00000 0.0050 0.0050 0.0050 0.0050 0.0010 0.010 0.010 0.010		000					
Sulphate 500 48.0 92.9 120.0 108.0 69.0 Sulphur 30 41 29 22 TDS 500 164 592 916 716 800 Temperature (C) 15 11.0 11.0 11.0 11.0 Thallium <0.050		200	42.0				
Sulphur 30 41 29 22 TDS 500 164 592 916 716 800 Temperature (C) 15 11.0 11.0 11.0 Thallium <0.050		500	49.0				
TDS 500 164 592 916 716 800 Temperature (C) 15 11.0 11.0 11.0 11.0 11.0 11.0 0.20000 <0.50000		500	40.0				
Temperature (C) 15 Thallium <0.20000		500	164				
Thallium <0.20000			104	J32	310		
Tin <0.050							
Titanium <0.005 0.009 <0.010 <0.010 TOC 6 Turbidity (NTU) 1 5.2 2.2 1.8 Vanadium <0.0050				<0.050	<0.050		
TOC 6 Turbidity (NTU) 1 5.2 2.2 1.8 Vanadium <							
Turbidity (NTU) 1 5.2 2.2 1.8 Vanadium <	TOC		6				-
		1	5.2				
Zinc 5 <0.050 0.011 <0.005 <0.010 <0.010							
	Zinc	5	<0.050	0.011	<0.005	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P4-2			
Date Sampled:		20-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
Alkalinity (CaCO3) Aluminum Ammonia (as N)	30-500 0.1	691 <0.030 0.03	430 0.050 0.04
Antimony	0.005	0.00	0.04
Arsenic Barium	0.025 1	NA	0.060
Beryllium Bicarbonate		<0.010	<0.002
Bismuth Boron	5	NA	1.170
Bromide			
Cadmium Calcium	0.005	<0.00500 232.0	0.00010 154.0
Carbonate Chloride	250	38.0	43.0
Chromium Cobalt	0.05	<0.010 <0.0100	<0.010 0.0020
COD	_	61	38
Colour (TCU) Conductivity (uS/cm)	5	930	832
Copper Cyanide	1 0.2	<0.0050	0.0090
DOC Fluoride	5 1.5	21.1	13.7
Hardness (CaCO3)	80-100	703	476
Hydrogen Sulphide Iron	0.05 0.3	<0.01	0.08
Lead Magnesium	0.01	<0.0020 30.00	<0.0010 22.00
Manganese	0.05	13.900	5.780
Mercury Molybdenum	0.001	<0.010	0.010
Nickel Nitrate (as N)	10	<0.010 <0.10	<0.010 4.88
Nitrite (as N) Organic Nitrogen	1 0.15	<0.10	<0.10
pH (pH units)	6.5-8.5	6.9	6.7
Phenois Phosphate (as P)		0.004 <0.03	<0.001 <0.03
Phosphorus (total) Potassium		0.03 3.0	4.84 4.0
Selenium Silicon		3.30	2.38
Silver		<0.0100	<0.0001
Sodium Strontium	200	74.0 1.330	44.0 0.682
Sulphate Sulphur	500	87.0 27	68.0 23
TDS Temperature (C)	500 15	900 5.0	668 10.3
Thallium	1.5	<0.20000	<0.00100
Tin Titanium		<0.050 <0.010	<0.010 <0.010
TOC Turbidity (NTU)	1		
Vanadium Zinc	5	<0.0100 0.230	0.0020 <0.010
	•		· -

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P4-2 Sheet: 2

Date Sampled:		20-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
1,1,1,2-Tetrachloroethane			<0.60
1.1.1-Trichloroethane			<0.40
1,1,2,2-Tetrachloroethane			<0.60
1,1,2-Trichloroethane			<0.40
1.1-Dichloroethane			<0.40
1,1-Dichloroethylene	14		<0.5000
1,2-Dichloroethylene	1-7		<1.00
1,2-Dichlorobenzene	200		<0.40
1,2-Dichloroethane	5		<0.700
1,2-Dichloropropane	J		<0.70
1,3,5-Trimethylbenzene			<0.30
1.3-Dichlorobenzene			<0.40
1,4-Dichlorobenzene	5		<0.400
Benzene	5		<0.5000
Bromodichloromethane			<0.300
Bromoform			<0.400
Bromomethane			<0.500
c-1,3-Dichloropropylene			<0.20
Carbon Tetrachloride	5		<0.900
Chlorobenzene	80		<0.200
Chloroethane			<1.0
Chloroform			<0.50
Chioromethane			<1.000
cis-1,2-Dichloroethylene			<0.40
Dibromochloromethane			<0.30
Ethylbenzene	2.4		<0.5000
m/p-Xylene	300		<1.000
Methylene Chloride	50		<4.00
o-Xylene	300		<0.500
Styrene			<0.50
t-1,2-Dichloroethylene	•		<0.4000
t-1,3-Dichloropropylene			<0.20
Tetrachloroethylene	30		<0.30
Toluene	24		<0.5000
Trichloroethylene	50		<0.30
Trichlorofluoromethane			<0.50
Vinyl Chloride	2		<0.500

All VOC's reported in $\mu g/L$. All other values reported in mg/L unless otherwise noted.

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P5-1						Sheet: 1
Date Sampled:		31-Oct-1991	03-Dec-1997	14-May-1999	02-Sep-1999	19-Oct-1999
<u>Parameter</u>	ODWS/O					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	142	100 0.730 0.19 <0.1000	110 <0.030 0.34	93 0.030 0.34	97 <0.030 0.38
Arsenic Barium Beryllium Bismuth	0.025 1	0.022 0.160	<0.100 0.022 <0.001 <0.100	0.020 <0.010	<0.010 <0.010	NA <0.010
Boron Bromide	5	0.030	0.030 <0.05	<0.010	<0.010	NA
Cadmium Calcium Carbonate	0.005	<0.00500 20.0	<0.00500 <0.00500 25.5 121.80	<0.00500 21.0	<0.00500 21.0	<0.00500 18.0
Chloride Chromium Cobalt COD	250 0.05	52.0 <0.050 6	6.6 <0.005 <0.0050 <5	7.0 <0.010 <0.0100 10	6.0 <0.010 <0.0100 8	7.0 <0.010 <0.0100 8
Colour (TCU) Conductivity (uS/cm) Copper Cyanide	5 1 0.2	66 247 <0.0500	102 233 0.0030	200 <0.0050	175 <0.0050	140 <0.0050
DOC Fluoride	5 1.5	0.014 2.1 0.28	1.8 0.20	2.0	2.1	2.3
Hardness (CaCO3) Hydrogen Sulphide	80-100 0.05	<0.02	95	89	89	78
Iron Lead Magnesium	0.3 0.01	17.92 <0.0500	0.08 7.51	0.02 <0.0020 9.00	0.04 <0.0020 9.00	0.07 <0.0020 8.00
Manganese Mercury Molybdenum	0.05 0.001	0.380 <0.0001	0.086	0.050	0.040	0.040
Nickel Nitrate (as N) Nitrite (as N)	10 1	0.060 <0.10 <0.01	<0.010 <0.020 0.02 <0.02	<0.010 <0.010 <0.10 <0.10	<0.010 <0.010 <0.10	<0.010 <0.010 <0.10
Organic Nitrogen pH (pH units)	0.15 6.5-8.5	0.11 7.7	8.1	8.3	7.2	7.7
Phenols Phosphate (as P) Phosphorus (total)		0.016 4.93	<0.10 0.22	<0.001 0.15 5.40	<0.001 0.28	<0.001 0.87 3.44
Potassium Selenium Silicon		<0.001	2.0 <0.100	4.0 8.30	4.0 8.50	4.0 8.40
Silver Sodium Strontium	200	<0.0500 21.0	<0.0030 16.9 0.069	<0.0100 22.0 0.064	0.0200 21.0 0.068	<0.0100 22.0 0.072
Sulphate Sulphur TDS	500 500	34.0 144	20.5 7 139	19.0 7 156	18.0 7 148	17.0 6 164
Temperature (C) Thallium Tin	15	144	<0.050	9.5 <0.20000 <0.050	9.0 <0.50000 <0.050	4.5 <0.20000 <0.050
Titanium TOC Turbidity (NTU)	4	4	<0.005	<0.010	<0.010	<0.010
Vanadium Zinc	1 5	29.0 <0.050	58.0 <0.0050 0.007	<0.0100 <0.010	<0.0100 <0.010	<0.0100 <0.010
	5	<0.050				

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P5-1		Sneet: 2
Date Sampled:	03-Nov-2000	

Date Sampled:		03-NOV-200
<u>Parameter</u>	ODWS/O	
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	86 0.480 0.37
Arsenic	0.025	
Barium	1	0.010
Beryllium		<0.002
Bismuth		-0.040
Boron	5	<0.010
Bromide Cadmium	0.005	<0.00010
Calcium	0.000	19.0
Carbonate		
Chloride	250	7.0
Chromium	0.05	<0.010
Cobalt		0.0004 8
COD Colour (TCU)	5	0
Conductivity (uS/cm)	J	302
Copper	1	0.0020
Cyanide	0.2	
DOC	5	2.0
Fluoride	1.5 80-100	76
Hardness (CaCO3) Hydrogen Sulphide	0.05	76
Iron	0.3	0.51
Lead	0.01	<0.0010
Magnesium		7.00
Manganese	0.05	<0.010
Mercury	0.001	-0.040
Molybdenum Nickel		<0.010 <0.010
Nitrate (as N)	10	<0.10
Nitrite (as N)	1	<0.10
Organic Nitrogen	0.15	
pH (pH units)	6.5-8.5	7.9
Phenois		<0.001
Phosphate (as P) Phosphorus (total)		0.10 0.27
Potassium		3.0
Selenium		
Silicon		7.73
Silver	000	<0.0001
Sodium	200	22.0 0.058
Strontium Sulphate	500	19.0
Sulphur	000	6
TDS	500	160
Temperature (C)	15	9.5
Thallium		<0.00100
Tin Titopium		<0.010 0.020
Titanium TOC		0.020
Turbidity (NTU)	1	
Vanadium		0.0020
Zinc	5	0.040

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P5-2						Sheet: 1
Date Sampled:		31-Oct-1991	03-Dec-1997	17-May-1999	02-Sep-1999	19-Oct-1999
Parameter	ODWS/O					
Alkalinity (CaCO3)	30-500	52	29	57	35	37
Aluminum Ammonia (as N)	0.1		0.210 0.05	<0.030 <0.02	<0.030 0.02	0.350 0.44
Antimony			<0.1000	~0.02	0.02	0.44
Arsenic	0.025	0.005	<0.100			
Barium	1	<0.100	0.007	<0.010	<0.010	NA
Beryllium			<0.001	<0.010	<0.010	<0.010
Bismuth	_		<0.100	.0.040	0.010	
Boron Bromide	5	0.010	<0.010	<0.010	<0.010	NA
Cadmium	0.005	<0.00500	<0.05 <0.00500	<0.00500	<0.00500	<0.00500
Calcium	0.005	16.0	11.2	17.0	15.0	13.0
Carbonate		10.0	35.10	11.0	10.0	10.0
Chloride	250	48.0	1.1	2.0	2.0	1.0
Chromium	0.05	< 0.050	< 0.005	<0.010	<0.010	<0.010
Cobalt			<0.0050	<0.0100	<0.0100	<0.0100
COD	_	4	<5	15	3	11
Colour (TCU) Conductivity (uS/cm)	5	46	172	00	00	70
Copper (us/cm)	1	126 <0.0500	86 <0.0030	93 <0.0050	80 <0.0050	73 <0.0050
Cyanide	0.2	<0.005	<0.0030	<0.0050	\0.0000	~0.0050
DOC	5	1.8	1.4	3.9	0.8	2.5
Fluoride	1.5	0.23	<0.10	9.	0.0	
Hardness (CaCO3)	80-100		38	63	58	49
Hydrogen Sulphide	0.05	<0.02				
iron .	0.3	2.20	0.03	0.01	0.02	0.36
Lead	0.01	<0.0500	-	<0.0020	<0.0020	<0.0020
Magnesium	0.05	-0.050	2.47	5.00	5.00	4.00
Manganese Mercury	0.05 0.001	<0.050 <0.0001	0.062	<0.010	<0.010	<0.010
Molybdenum	, 0.001	~0.0001	<0.010	<0.010	<0.010	<0.010
Nickel		<0.050	<0.020	<0.010	<0.010	<0.010
Nitrate (as N)	10	<0.10	0.13	1.18	1.54	1.83
Nitrite (as N)	1	<0.01	<0.02	<0.10	<0.10	<0.10
Organic Nitrogen	0.15	<0.10				
pH (pH units) Phenols	6.5-8.5	7.4	7.7	7.1	6.2	7.1
Phosphate (as P)		<0.002	<0.10	<0.001 <0.03	0.009 0.13	<0.001 0.30
Phosphorus (total)		1.58	0.49	19.30	0.13	2.33
Potassium		1.00	1.0	2.0	2.0	2.0
Selenium		<0.001	<0.100			
Silicon				6.50	7.30	8.30
Silver		<0.0500	<0.0030	<0.0100	0.0200	<0.0100
Sodium Strontium	200	4.0	2.3	3.0	3.0	3.0
Sulphate	500	29.0	0.029 10.8	0.044 14.0	0.045 10.0	0.530 10.0
Sulphur	500	29.0	4	6	10.0 4	3
TDS	500	56	47	80	80	7 6
Temperature (C)	15		••	7.5	12.0	6.0
Thallium				<0.20000	<0.50000	<0.20000
Tin			<0.050	<0.050	<0.050	<0.050
Titanium		_	<0.005	<0.010	<0.010	<0.010
TOC Turbidity (NTU)	4	3	70.0			
Vanadium	1	25.0	70.0 <0.0050	<0.0100	<0.0100	<0.0100
Zinc	5	<0.050	0.051	0.010	0.010	0.040
	-	0.000	3.00.	J.0.0	5.510	J.0+0

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P5-2	Sheet: 2
---------------------	----------

Date Sampled:		03-Nov-2000
<u>Parameter</u>	ODWS/O	
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	31 1.370 0.03
Arsenic Barium Beryllium Bismuth	0.025 1	0.020 <0.002
Boron	5	0.020
Bromide Cadmium Calcium Carbonate	0.005	<0.00010 12.0
Chloride Chromium Cobalt COD	250 0.05	<1.0 <0.010 0.0008 11
Colour (TCU) Conductivity (uS/cm) Copper	5 1 0.2	120 <0.0010
Cyanide DOC Fluoride	0.2 5 1.5	3.2
Hardness (CaCO3)	80-100	42
Hydrogen Sulphide Iron Lead Magnesium Manganese	0.05 0.3 0.01	1.42 <0.0010 3.00 0.070
Mercury Molybdenum Nickel	0.001	<0.010 <0.010
Nitrate (as N) Nitrite (as N) Organic Nitrogen	10 1 0.15	2.15 <0.10
pH (pH units) Phenols Phosphate (as P) Phosphorus (total) Potassium Selenium	6.5-8.5	7.7 <0.001 0.19 0.04 2.0
Silicon Silver Sodium	200	9.78 <0.0001 5.0
Strontium Sulphate	500	0.071 9.0
Sulphur TDS Temperature (C) Thallium Tin Titanium	500 15	3 76 11.0 <0.00100 <0.010 0.050
TOC Turbidity (NTU) Vanadium Zinc	1 5	0.0030 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P6-1						Sheet: 1
Date Sampled:		31-Oct-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
<u>Parameter</u>	ODWS/O					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	30-500 0.1 0.025	0.001	166 <0.030 0.09 <0.1000 <0.100	164 0.040 0.11 <0.1000 <0.100	192 <0.030 0.17	181 <0.030 0.14
Barium Beryllium Bicarbonate Bismuth	1	<0.100	0.055 <0.001 <0.100	0.050 <0.001 1.00 <0.100	0.060 <0.010	0.060 <0.010
Boron Bromide	5	0.020	<0.010 <0.010 <0.05	<0.010 <0.50	<0.010	<0.010
Cadmium Calcium Carbonate	0.005	<0.00500 42.0	<0.00500 65.2 202.20	<0.00500 63.5 197.60	<0.00500 76.0	<0.00500 78.0
Chloride Chromium Cobalt COD	250 0.05	44.0 <0.050 6	48.6 <0.005 <0.0050 6	36.9 <0.005 <0.0050 20	40.0 <0.010 <0.0100 5	41.0 <0.010 <0.0100 10
Colour (TCU) Conductivity (uS/cm) Copper	5 1	23 315 <0.0500	2 493 <0.0030	167 462 <0.0030	405 <0.0050	390 <0.0050
Cyanide DOC	0.2 5	<0.005 3.5	2.6	1.6	2.8	2.6
Fluoride Hardness (CaCO3) Hydrogen Sulphide	1.5 80-100 0.05	0.26 <0.02	0.10 236	<0.10 225	268	273
Iron Lead	0.3 0.01	4.44 <0.0500	0.17	0.93	0.70 <0.0020	0.11 <0.0020
Magnesium Manganese Mercury	0.05 0.001	0.240 <0.0001	17.60 0.285	16.00 0.253	19.00 0.300	19.00 0.270
Molybdenum Nickel Nitrate (as N)	10	<0.050 <0.10	<0.010 <0.020 <0.02	<0.010 <0.020 <0.20	<0.010 <0.010 <0.10	<0.010 <0.010 <0.10
Nitrite (as N) Organic Nitrogen	1 0.15	<0.01 0.10	<0.20	<0.20	<0.10	<0.10
pH (pH units) Phenols Phosphate (as P)	6.5-8.5	7.7 <0.002	7.7 <0.10	7.9 <1.00	7.0 <0.001 <0.03	6.8 <0.001 <0.01
Phosphorus (total) Potassium Selenium		2.22 <0.001	0.29 2.0 <0.100	4.40 <1.0 <0.100	6.33 1.0	1.0
Silicon Silver		<0.0500	<0.0030	<0.0030	12.10 <0.0100	12.20 0.0200
Sodium Strontium Sulphate	200 500	11.0 28.0	10.0 0.120 34.5	9.5 0.103 24.4	11.0 0.126 32.0	10.0 0.114 35.0
Sulphur TDS Temperature (C) Thallium	500 15	160	11 277	9 250	11 356 9.0 <0.20000	12 324 13.0 <0.50000
Tin Titanium TOC		5	<0.050 <0.005	<0.050 <0.005	<0.050 <0.010	<0.050 <0.010
Turbidity (NTU) Vanadium	1	11.0	1.3 <0.0050	2.1 <0.0050	<0.0100	<0.0100
Zinc	5	<0.050	<0.005	<0.005	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P6-1			
Date Sampled:		20-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	176 <0.030 0.10	153 0.360 0.06
Arsenic Barium Beryllium Bicarbonate	0.025 1	NA <0.010	0.050 <0.002
Bismuth Boron	5	NA	<0.010
Bromide Cadmium Calcium Carbonate	0.005	<0.00500 73.0	<0.00010 50.0
Chloride Chromium Cobalt COD	250 0.05	38.0 <0.010 <0.0100 <3	20.0 <0.010 0.0004 11
Colour (TCU) Conductivity (uS/cm) Copper Cyanide	5 1 0.2	235 <0.0050	519 <0.0010
DOC Fluoride	5 1.5	2.0	1.8
Hardness (CaCO3) Hydrogen Sulphide	80-100 0.05	252	179
Iron Lead Magnesium	0.3 0.01	0.03 <0.0020 17.00	1.17 <0.0010 13.00
Manganese Mercury Molybdenum	0.05 0.001	0.270	0.220
Nickel Nitrate (as N) Nitrite (as N)	10	0.010 <0.010 <0.10 <0.10	<0.010 <0.010 <0.10 <0.10
Organic Nitrogen pH (pH units) Phenols Phosphate (as P) Phosphorus (total) Potassium	0.15 6.5-8.5	7.6 0.001 0.75 0.49 1.0	7.4 <0.001 <0.03 1.24 1.0
Selenium Silicon Silver Sodium	200	11.30 <0.0100 11.0	12.00 <0.0001 10.0
Strontium Sulphate Sulphur	500	0.144 34.0 11	0.092 25.0 8
TDS Temperature (C) Thallium Tin Titanium TOC	500 15	292 3.0 <0.20000 <0.050 <0.010	252 9.5 <0.00100 <0.010 0.020
Turbidity (NTU) Vanadium Zinc	1 5	<0.0100 <0.010	0.0010 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P6-2						Sheet: 1
Date Sampled:		31-Oct-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
<u>Parameter</u>	ODWS/O					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	30	19 0.290 0.04 <0.1000 <0.100	15 0.070 <0.02 <0.1000 <0.100	12 <0.030 0.09	13 <0.030 <0.10
Arsenic Barium Beryllium Bicarbonate Bismuth	0.025 1	0.046 <0.100	0.017 <0.001 <0.100	0.013 <0.001 1.00 <0.100	<0.010 <0.010	<0.010 <0.010
Boron Bromide	5	0.010	<0.010 <0.010 <0.05	<0.100 <0.010 <0.50	<0.010	<0.010
Cadmium Calcium Carbonate	0.005	<0.00500 35.0	<0.00500 13.4 22.90	<0.00500 11.7 15.90	<0.00500 8.0	<0.00500 7.0
Chloride Chromium Cobalt	250 0.05	96.0 <0.050	32.2 <0.005 <0.0050	24.7 <0.005 <0.0050	13.0 <0.010 <0.0100	12.0 <0.010 <0.0100
COD Colour (TCU) Conductivity (uS/cm) Copper	5 1	5 6 362 <0.0500	9 <1 201 0.0030	7 517 168 <0.0030	7 100 <0.0050	8 500 <0.0050
Cyanide DOC	0.2 5	<0.005 2.9	1.9	1.5	2.4	2.8
Fluoride Hardness (CaCO3) Hydrogen Sulphide	1.5 80-100 0.05	0.32 <0.02	<0.10 45	<0.10 40	28	22
Iron Lead	0.3 0.01	2.24 <0.0500	0.21	0.06	<0.01 <0.0020	<0.01 <0.0020
Magnesium Manganese Mercury	0.05 0.001	0.140 <0.0001	2.8 4 0.011	2.50 0.008	2.00 <0.010	1.00 <0.010
Molybdenum Nickel Nitrate (as N)	10	<0.050 0.10	<0.010 <0.020 0.09	<0.010 <0.020 <0.20	<0.010 <0.010 0.10	<0.010 <0.010 0.11
Nitrite (as N) Organic Nitrogen pH (pH units)	1 0.15	<0.01 0.28	<0.20	<0.20 6.1	<0.10 6.8	<0.10 5.6
Phenois Phosphate (as P)	6.5-8.5	6.5 <0.002	6.4 <0.10	<1.00	<0.001 0.06	<0.001 <0.01
Phosphorus (total) Potassium Selenium		5.18 <0.001	1.34 <1.0 <0.100	3.00 <1.0 <0.100	4.23 1.0	1.0
Silicon Silver	200	<0.0500	<0.0030	<0.0030	3.80 <0.0100	3.80 0.0200
Sodium Strontium Sulphate	200 500	22.0 33.0	20.1 0.124 31.7	14.8 0.127 20.7	11.0 0.083 18.0	10.0 0.064 14.0
Sulphur TDS Temperature (C)	500 15	200	8 113	8 85	7 96 8.0	6 60 11.0
Thallium Tin Titanium			<0.050 0.015	<0.050 <0.005	<0.20000 <0.050 <0.010	<0.50000 <0.050 <0.010
TOC Turbidity (NTU) Vanadium	1	4 2.9	1.8 <0.0050	2.4 <0.0050	<0.0100	<0.0100
Zinc	5	<0.050	0.013	<0.005	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P6-2			
Date Sampled:		20-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
Alkalinity (CaCO3) Aluminum	30-500 0.1	15 0.050	18 0.200
Ammonia (as N)	0.1	<0.02	<0.02
Antimony		-0.02	-0.02
Arsenic	0.025		
Barium	1	NA	<0.010
Beryllium		<0.010	<0.002
Bicarbonate Bismuth			
Boron	5	NA	<0.010
Bromide	_		
Cadmium	0.005	<0.00500	<0.00010
Calcium		8.0	9.0
Carbonate Chloride	250	16.0	24.0
Chromium	0.05	<0.010	<0.010
Cobalt		<0.0100	0.0002
COD		8	11
Colour (TCU)	5	0.4	454
Conductivity (uS/cm) Copper	1	64 <0.0050	151 <0.0010
Cyanide	0.2	~0.0050	40.0010
DOC	5	1.8	1.5
Fluoride	1.5		
Hardness (CaCO3)	80-100	28	35
Hydrogen Sulphide Iron	0.05 0.3	0.06	0.20
Lead	0.01	<0.0020	<0.0010
Magnesium		2.00	3.00
Manganese	0.05	<0.010	<0.010
Mercury	0.001	-0.010	<0.010
Molybdenum Nickel		<0.010 <0.010	<0.010 <0.010
Nitrate (as N)	10	<0.10	<0.10
Nitrite (as N)	1	<0.10	<0.10
Organic Nitrogen	0.15		
pH (pH units) Phenols	6.5-8.5	7.0 0.00 4	6.6 <0.001
Phosphate (as P)		0.004	<0.001
Phosphorus (total)		0.44	1.72
Potassium		1.0	<1.0
Selenium		0.00	4.04
Silicon Silver		3.90 <0.0100	4.04 <0.0001
Sodium	200	11.0	13.0
Strontium		0.093	0.090
Sulphate	500	16.0	14.0
Sulphur TDS	500	5 64	5 88
Temperature (C)	15	5.0	10.0
Thallium	. •	<0.20000	<0.00100
Tin		<0.050	<0.010
Titanium		<0.010	0.010
TOC Turbidity (NTU)	1		
Vanadium	•	<0.0100	<0.0010
Zinc	5	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P7-1						Sheet: 1
Date Sampled:		31-Oct-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
Parameter	ODWS/O					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	154	168 0.180 0.45 <0.1000	160 0.620 0.32 <0.1000	179 <0.030 0.39	165 0.040 0.38
Arsenic Barium Beryllium Bicarbonate Bismuth	0.025 1	0.058 0.180	<0.100 0.014 <0.001 <0.100	<0.100 0.014 <0.001 1.00 <0.100	<0.010 <0.010	<0.010 <0.010
Boron Bromide	5	0.100	0.080 0.20	0.080 <0.50	0.080	0.080
Cadmium Calcium Carbonate	0.005	<0.00500 20.0	<0.00500 16.0 204.70	<0.00500 17.6 192.70	<0.00500 18.0	<0.00500 18.0
Chloride Chromium Cobalt COD	250 0.05	53.0 <0.050	47.2 <0.005 <0.0050	38.3 <0.005 <0.0050	38.0 <0.010 <0.0100	39.0 <0.010 <0.0100
Colour (TCU) Conductivity (uS/cm)	5	5 41 418	10 90 455	11 862 432	7 370	10 340
Copper Cyanide DOC	1 0.2 5	0.1300 0.009 5.7	0.0030 1.6	0.0050 2.1	<0.0050 2.9	<0.0050
Fluoride Hardness (CaCO3) Hydrogen Sulphide	1.5 80-100 0.05	0.54	0.40 81	0.30 86	90	90
Iron Lead	0.03 0.01	23.25 0.1600	0.03	0.90	<0.01 <0.0020	0.33 <0.0020
Magnesium Manganese Mercury	0.05 0.001	2.450 <0.0001	10.00 0.023	10.20 0.034	11.00 0.020	11.00 0.020
Molybdenum Nickel Nitrate (as N)	10	0.060 <0.10	<0.010 <0.020 0.02	<0.010 <0.020 <0.20	<0.010 <0.010 0.35	<0.010 <0.010 0.21
Nitrite (as N) Organic Nitrogen	1 0.15	<0.01 0.48	<0.20	<0.20	<0.10	<0.10
pH (pH units) Phenols Phosphate (as P)	6.5-8.5	7.9 <0.002	8.1 <0.10	8.1 <1.00	8.3 <0.001 0.45	6.5 <0.001 0.38
Phosphorus (total) Potassium Selenium		2.65 <0.001	0.01 5.0 <0.100	2.90 3.0 <0.100	14.10 5.0	5.0
Silicon Silver		<0.0500	<0.0030	0.0050	6.30 <0.0100	6.00 0.0200
Sodium Strontium Sulphate	200 500	53.0 26.0	68.8 0.127 6.8	61.8 0.112 4.7	73.0 0.114 5.0	74.0 0.120 6.0
Sulphur TDS Temperature (C) Thallium	500 15	272	2 254	2 232	3 284 9.5 <0.20000	3 268 12.0 <0.50000
Tin Titanium TOC		6	<0.050 <0.005	<0.050 0.024	<0.050 <0.010	<0.050 <0.010
Turbidity (NTU) Vanadium	1	35.0	55.0 <0.0050	50.0 0.0070	<0.0100	<0.0100
Zinc	5	0.210	<0.005	<0.005	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P7-1			
Date Sampled:		20-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
Alkalinity (CaCO3) Aluminum	30-500 0.1	160 0.310	170 4.590
Ammonia (as N) Antimony		0.11	<0.02
Arsenic Barium	0.025 1	NA 10.040	0.040
Beryllium Bicarbonate Bismuth		<0.010	<0.002
Boron Bromide	5	NA	0.080
Cadmium Calcium	0.005	<0.00500 19.0	<0.00010 16.0
Carbonate Chloride	250	34.0	41.0
Chromium Cobalt	0.05	<0.010 <0.0100	<0.010 0.0029
COD Colour (TCU)	5	11	19
Conductivity (uS/cm) Copper	1	240 <0.0050	548 0.0070
Cyanide DOC	0.2 5	2.4	2.9
Fluoride Hardness (CaCO3) Hydrogen Sulphide	1.5 80-100 0.05	93	89
Iron Lead	0.05 0.3 0.01	0.27 <0.0020	4.78 0.0020
Magnesium Manganese	0.05	11.00 0.020	12.00 0.120
Mercury Molybdenum	0.001	<0.010	<0.010
Nickel Nitrate (as N)	10	<0.010 0.20	<0.010 0.73
Nitrite (as N) Organic Nitrogen	1 0.15	<0.10	<0.10
pH (pH units) Phenols	6.5-8.5	8.1 <0.001	7.7 <0.001
Phosphorus (total)		1.02 0.93	0.54 2.05
Potassium Selenium Silicon		5.0 6.30	5.0 9.52
Silver Sodium	200	<0.0100 68.0	<0.0001 69.0
Strontium Sulphate	500	0.126 5.0	0.138 6.0
Sulphur TDS	500	2 240	2 316
Temperature (C) Thallium	15	3.0 <0.20000	9.3 <0.00100
Tin Titanium TOC		<0.050 <0.010	<0.010 0.080
Turbidity (NTU) Vanadium	1	<0.0100	0.0110
Zinc	5	<0.010	0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P7-2						Sheet: 1
Date Sampled:		31-Oct-1991	03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999
<u>Parameter</u>	ODWS/O					
Alkalinity (CaCO3)	30-500	60	54	57 1.670	71 <0.030	52 <0.030
Aluminum Ammonia (as N)	0.1		0.440 0.03	<0.02	0.28	0.05
Antimony			<0.1000	<0.1000	 -	
Arsenic	0.025	0.052	<0.100	<0.100	0.040	0.040
Barium Beryllium	1	0.100	0.022 <0.001	0.021 <0.001	0.010 <0.010	0.010 <0.010
Bicarbonate			1.50	1.00	40.010	-0.010
Bismuth			<0.100	<0.100		
Boron	5	0.020	0.010	<0.010	<0.010	<0.010
Bromide Cadmium	0.005	0.00600	<0.05 <0.00500	<0.50 <0.00500	<0.00500	<0.00500
Calcium	0.005	16.0	17.2	19.5	19.0	18.0
Carbonate			59.70	67.20		
Chloride	250	14.0	2.2	2.8	2.0	2.0
Chromium	0.05	<0.050	<0.005	<0.005	<0.010	<0.010
Cobalt COD		2	<0.0050 <5	<0.0050 7	<0.0100 5	<0.0100 8
Colour (TCU)	5	55	74	1290	J	· ·
Conductivity (uS/cm)	_	140	130	151	140	80
Copper	1	0.0900	0.0040	0.0060	<0.0050	<0.0050
Cyanide DOC	0.2	<0.005	0.7	0.5	1.3	1.7
Fluoride	5 1.5	11.4 0.23	<0.10	<0.10	1.3	1.7
Hardness (CaCO3)	80-100	0.20	66	73	76	70
Hydrogen Sulphide	0.05	0.20				
Iron	0.3	5.16	0.37	0.21	<0.01	0.12
Lead Magnesium	0.01	0.0900	5.64	5.97	<0.0020 7.00	<0.0020 6.00
Manganese	0.05	0.430	0.010	0.019	<0.010	0.020
Mercury	0.001	<0.0001				
Molybdenum			<0.010	<0.010	<0.010	<0.010
Nickel Nitrate (as N)	10	0.060 <0.10	<0.020 0.05	<0.020 0.30	<0.010 0.58	<0.010 0.70
Nitrite (as N)	10	<0.10	<0.02	<0.20	<0.10	<0.10
Organic Nitrogen	0.15	<0.10		0.00		
pH (pH units)	6.5-8.5	7.7	8.4	8.2	8.4	6.8
Phenols		<0.002	-0.10	<1.00	<0.001 0.12	0.001 0.08
Phosphate (as P) Phosphorus (total)		2.65	<0.10 0.17	7.40	9.25	0.00
Potassium		2.00	2.0	2.0	1.0	1.0
Selenium		<0.001	<0.100	<0.100		
Silicon Silver		<0.0E00	<0.0030	0.0040	6.30 <0.0100	6.80 0.0200
Sodium	200	<0.0500 4.0	2.5	2.1	3.0	3.0
Strontium			0.038	0.045	0.039	0.047
Sulphate	500	22.0	13.8	12.5	11.0	12.0
Sulphur	500	400	5	5	5 100	4 84
TDS Temperature (C)	500 15	120	75	79	8.0	13.0
Thallium					<0.20000	<0.50000
Tin			<0.050	<0.050	<0.050	<0.050
Titanium		4.4	0.016	800.0	<0.010	<0.010
TOC Turbidity (NTU)	1	14 56.0	48.0	41.0		
Vanadium	•	50.0	<0.0050	<0.0050	<0.0100	<0.0100
Zinc	5	0.340	<0.005	800.0	<0.010	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P7-2			
Date Sampled:		20-Oct-1999	03-Nov-2000
<u>Parameter</u>	ODWS/O		
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	30-500 0.1	53 1.190 <0.02	60 1.450 0.45
Arsenic Barium Beryllium Bicarbonate	0.025 1	NA <0.010	0.030 <0.002
Bismuth Boron	5	NA	<0.010
Bromide Cadmium Calcium Carbonate	0.005	<0.00500 18.0	<0.00010 17.0
Chloride Chromium Cobalt COD	250 0.05	2.0 <0.010 <0.0100 5	2.0 <0.010 0.0010 5
Colour (TCU) Conductivity (uS/cm) Copper Cyanide	5 1 0.2	105 <0.0050	176 0.0040
DOC Fluoride	5 1.5	0.8	0.6
Hardness (CaCO3) Hydrogen Sulphide	80-100 0.05	70	67
Iron Lead Magnesium	0.3 0.01	1.49 <0.0020 6.00	1.30 <0.0010 6.00
Manganese Mercury Molybdenum Nickel	0.05 0.001	0.040 <0.010 <0.010	0.030 <0.010 <0.010
Nitrate (as N) Nitrite (as N) Organic Nitrogen	10 1 0.15	0.27 <0.10	<0.10 <0.10 <0.10
pH (pH units) Phenols Phosphate (as P) Phosphorus (total) Potassium Selenium	6.5-8.5	8.5 <0.001 0.57 1.71 2.0	7.7 <0.001 0.05 7.96 2.0
Silicon Silver Sodium	200	8.40 <0.0100 4.0	8.05 <0.0001 <2.0
Strontium Sulphate Sulphur	500	0.046 12.0 4	0.038 13.0 4
TDS Temperature (C) Thallium Tin Titanium	500 15	5.0 <0.20000 <0.050 0.040	112 10.0 <0.00100 <0.010 0.050
TOC Turbidity (NTU)	1		
Vanadium Zinc	5	<0.0100 <0.010	0.0040 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P8-1						Sheet: 1
Date Sampled:		03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999	20-Oct-1999
<u>Parameter</u>	ODWS/O					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	30-500 0.1 0.025	194 1.000 0.29 <0.1000 <0.100	180 1.600 0.48 <0.1000 <0.100	177 <0.030 0.48	166 <0.030 0.35	176 0.190 0.34
Barium Beryllium Bicarbonate Bismuth	1	0.038 0.002 <0.100	0.037 <0.001 1.00 <0.100	0.020 <0.010	0.010 <0.010	NA <0.010
Boron Bromide	5	0.100 0.18	0.110 <0.50	0.090	0.080	NA
Cadmium Calcium Carbonate	0.005	<0.00500 22.4 236.30	<0.00500 20.0 217.10	<0.00500 19.0	<0.00500 20.0	<0.00500 22.0
Chloride Chromium Cobalt COD	250 0.05	42.7 <0.005 <0.0050 28	34.8 <0.005 <0.0050 23	27.0 <0.010 <0.0100 14	29.0 <0.010 <0.0100 8	32.0 <0.010 <0.0100 21
Colour (TCU) Conductivity (uS/cm) Copper DOC	5 1 5	110 560 0.0040 10.3	1720 545 0.0040 5.6	480 <0.0050 5.0	420 <0.0050 5.1	330 <0.0050 4.8
Fluoride Hardness (CaCO3) Iron	1.5 80-100 0.3	0.30 106 1.44	<0.10 103 2.38	97 <0.01	99 0.04	104 0.16
Lead Magnesium Manganese Molybdenum	0.01	12.00 0.036 <0.010	12.70 0.085 0.010	<0.0020 12.00 0.020 <0.010	<0.0020 12.00 <0.010 <0.010	<0.0020 12.00 0.020 <0.010
Nickel Nitrate (as N) Nitrite (as N) pH (pH units)	10 1 6.5-8.5	<0.020 0.03 <0.20 7.8	<0.020 <0.20 <0.20 8.0	<0.010 <0.10 <0.10 8.0	<0.010 0.19 <0.10 7.8	<0.010 0.42 <0.10 8.1
Phenols Phosphate (as P) Phosphorus (total) Potassium Selenium		<0.10 0.44 6.0	<1.00 4.90 5.0 <0.100	<0.001 0.15 1.09 5.0	<0.001 0.14 5.0	0.001 0.69 1.18 5.0
Silicon Silver Sodium Strontium	200	<0.0030 80.4 0.141	0.0060 84.3 0.142	5.30 <0.0100 81.0 0.138	5.20 0.0200 85.0 0.139	5.90 <0.0100 96.0 0.138
Sulphate Sulphur TDS Temperature (C)	500 500 15	45.6 22 325	48.6 16 314	47.0 15 336 11.0	49.0 16 312 14.0	53.0 17 312 4.5
Thallium Tin Titanium Turbidity (NTU)	1	<0.050 0.039 49.0	<0.050 0.034 57.0	<0.20000 <0.050 <0.010	<0.50000 <0.050 <0.010	<0.20000 <0.050 <0.010
Vanadium Zinc	5	<0.0050 0.005	0.0070 0.010	<0.0100 <0.010	<0.0100 <0.010	<0.0100 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P8-1		Sheet: 2
Date Sampled:	03-Nov-2000	

Date Sampled:		03-Nov-200
Parameter	ODWS/O	
Alkalinity (CaCO3) Aluminum Ammonia (as N)	30-500 0.1	168 0.640 0.29
Antimony Arsenic Barium Beryllium Bicarbonate	0.025 1	0.010 <0.002
Bismuth Boron Bromide	5	0.100
Cadmium Calcium Carbonate	0.005	<0.00010 17.0
Chloride Chromium Cobalt COD	250 0.05	31.0 <0.010 0.0005 11
Colour (TCU) Conductivity (uS/cm) Copper DOC	5 1 5 1.5	655 0.0020 3.2
Fluoride Hardness (CaCO3) Iron Lead	80-100 0.3 0.01	100 0.74 <0.0010 14.00
Magnesium Manganese Molybdenum Nickel	0.05	0.020 0.020 <0.010
Nitrate (as N) Nitrite (as N) pH (pH units) Phenols Phosphate (as P)	10 1 6.5-8.5	0.43 <0.10 7.4 <0.001 0.46
Phosphorus (total) Potassium Selenium		0.21 6.0
Silicon Silver Sodium Strontium	200	6.13 <0.0001 80.0 0.129
Sulphate Sulphur TDS Temperature (C)	500 500 15	46.0 15 328 10.1
Thallium Tin Titanium		<0.00100 <0.010 0.030
Turbidity (NTU) Vanadium Zinc	1 5	0.0040 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P8-2						Sheet: 1
Date Sampled:		03-Dec-1997	21-Apr-1998	14-May-1999	02-Sep-1999	20-Oct-1999
<u>Parameter</u>	ODWS/O					
Alkalinity (CaCO3) Aluminum	30-500 0.1	757 0.050	749 0.130	840 <0.030	809 <0.030	804 0.030
Ammonia (as N) Antimony Arsenic	0.025	<0.02 <0.1000 <0.100	<0.02 <0.1000 <0.100	0.07	0.07	0.02
Barium Beryllium	1	0.334 <0.001	0.290 <0.001	0.270 <0.010	0.290 <0.010	NA <0.010
Bicarbonate Bismuth		<0.100	1.00 <0.100			
Boron Bromide	5	0.670 0.44	0.730 <0.50	0.730	0.670	NA
Cadmium Calcium Carbonate	0.005	<0.00500 265.0 922.70	<0.00500 239.0 910.80	<0.05000 286.0	<0.00500 271.0	<0.00500 268.0
Chloride Chromium	250 0.05	75.9 <0.005	68.1 <0.005	51.0 <0.010	59.0 <0.010	55.0 <0.010
Cobalt COD	_	0.0110 106	0.0110 100	<0.0100 98	<0.0100 109	<0.0100 108
Colour (TCU) Conductivity (uS/cm) Copper	5	44 1650	1210 1510	1000 0.0390	950	970
DOC Fluoride	1 5 1.5	0.0370 39.0 0.10	0.0220 46.0 <0.10	47.5	0.0410 41.1	0.0670 41.0
Hardness (CaCO3)	80-100 0.3	825 0.03	764 0.13	883 <0.01	850 0.06	809 0.15
Lead Magnesium	0.01	37.40	40.10	<0.0020 41.00	<0.0020 42.00	<0.0020 34.00
Manganese Molybdenum	0.05	5.700 <0.010	4.920 0.010	4.790 <0.010	2.780 <0.010	4.220 <0.010
Nickel Nitrate (as N)	10	<0.020 0.02	<0.020 <0.20	<0.010 <0.10	<0.010 0.12	<0.010 <0.10
Nitrite (as N) pH (pH units) Phenols	1 6.5-8.5	<0.20 6.8	<0.20 6.8	<0.10 6.9 <0.001	<0.10 6.6 <0.001	<0.10 6.8 <0.001
Phosphate (as P) Phosphorus (total)		<0.10 0.04	<1.00 16.00	<0.001 <0.03 1.81	0.02	1.38 2.53
Potassium Selenium		5.0 <0.100	4.0 <0.100	6.0	5.0	5.0
Silicon Silver		<0.0030	0.0060	16.60 <0.0100	15.70 0.0200	18.30 <0.0100
Sodium Strontium	200	61.5 1.350	59.6 1.090	70.0 1.300	68.0 1.020	69.0 1.350
Sulphate Sulphur TDS	500	159.0 45	58.4 24	37.0 13	42.0 14	14.0 5
Temperature (C) Thallium	500 15	1060	919	1112 11.0 <0.20000	984 11.0 <0.50000	1028 6.0 <0.20000
Tin Titanium		<0.050 0.006	<0.050 0.007	<0.050 <0.010	<0.050 <0.010	<0.050 <0.010
Turbidity (NTU) Vanadium	1	1.8 <0.0050	1.8 <0.0050	<0.0100	<0.0100	<0.0100
Zinc	5	0.013	<0.005	<0.010	<0.010	0.260

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: P8-2		

03-Nov-2000 Date Sampled: ODWS/O <u>Parameter</u> 30-500 745 Alkalinity (CaCO3) 0.170 Aluminum 0.1 Ammonia (as N) 0.03 Antimony Arsenic 0.025 0.230 Barium 1 Beryllium < 0.002 Bicarbonate **Bismuth** 5 0.600 Boron **Bromide** 0.005 0.00010 Cadmium 238.0 Calcium Carbonate 250 41.0 Chloride 0.05 < 0.010 Chromium 0.0068 Cobalt COD 68 5 Colour (TCU) 1450 Conductivity (uS/cm) 0.0820 1 Copper 5 31.7 DOC 1.5 Fluoride Hardness (CaCO3) 80-100 743 0.19 0.3 Iron 0.01 < 0.0010 Lead Magnesium 36.00 0.05 4.110 Manganese Molybdenum 0.010 0.020 Nickel 10 Nitrate (as N) < 0.10 Nitrite (as N) < 0.10 6.5-8.5 6.3 pH (pH units) < 0.001 Phenols <0.03 Phosphate (as P) Phosphorus (total) 10.90 6.0 Potassium Selenium 20.20 Silicon Silver <0.0001 200 52.0 Sodium 1.180 Strontium 500 19.0 Sulphate Sulphur 6 500 944 TDS 10.5 Temperature (C) 15 <0.00100 Thallium <0.010 Titanium < 0.010

All values reported in mg/L unless otherwise noted.

1

5

0.0200

< 0.010

Turbidity (NTU)

Vanadium

Zinc

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Date Sampled: 03-Dec-1997 21-Apr-1998 14-May-1999 02-Sep-1999 19-Oct-1998 Parameter ODWS/O Alkalinity (CaCO3) 30-500 92 75 86 73 75 Aluminum 0.1 3.180 3.520 <0.030 0.050 <0.030 Ammonia (as N) 0.12 0.07 0.24 0.23 0.30 Antimony <0.1000 <0.1000 <0.1000 <0.1000
Alkalinity (CaCO3) 30-500 92 75 86 73 75 Aluminum 0.1 3.180 3.520 <0.030 0.050 <0.030 Ammonia (as N) 0.12 0.07 0.24 0.23 0.30 Antimony <0.1000 <0.1000
Aluminum 0.1 3.180 3.520 <0.030
Antimony <0.1000 <0.1000
Arsenic 0.025 <0.100 <0.100 Barium 1 0.087 0.088 0.020 0.020 NA Details: 0.020 0.020 NA
Beryllium <0.001 <0.010 <0.010 <0.010 Bicarbonate 1.10 2.00
Bismuth <0.100 Boron 5 <0.010 <0.010 <0.010 <0.010 NA Bromide <0.05 <0.50
Cadmium 0.005 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500
Carbonate 107.40 84.30
Chloride 250 3.5 1.7 3.0 2.0 2.0 Chromium 0.05 0.010 0.010 <0.010
Cobalt 0.0090 0.0050 <0.0100 <0.0100 <0.0100 COD 23 7 5 3 11
Colour (TCU) 5 148 12700 Conductivity (uS/cm) 206 184 110 140 130
Copper 1 0.0050 0.0100 <0.0050 <0.0050 <0.0050 DOC 5 1.4 0.9 3.0 2.1 2.6
Fluoride 1.5 <0.10 0.10 Hardness (CaCO3) 80-100 97 89 99 90 88
Iron 0.3 5.11 5.47 0.04 0.07 0.01 Lead 0.01 <0.0020 <0.0020 <0.0020
Magnesium 8.82 7.48 9.00 8.00 8.00
Molybdenum <0.010 <0.010 <0.010 <0.010 <0.010
Nickel <0.020 <0.020 <0.010 <0.010 <0.010 Nitrate (as N) 10 0.02 <0.20
Nitrite (as N) 1 <0.02 <0.20 <0.10 <0.10 <0.10 pH (pH units) 6.5-8.5 8.4 8.5 8.4 7.1 8.6
Phenols < 0.001 < 0.001 < 0.001 Phosphate (as P) < 0.10 < 1.00 0.09 0.33 < 0.03
Phosphorus (total) 0.11 64.00 0.80 8.22 Potassium 3.0 2.0 5.0 4.0 4.0
Selenium <0.100 <0.100 Silicon 5.70 5.70 5.60
Silver <0.0030 0.0060 <0.0100 0.0200 <0.0100
Strontium 0.077 0.057 0.056 0.051 0.055
Sulphur 500 17.5 17.1 23.0 17.0 169.0 Sulphur 6 6 7 6 6
TDS 500 123 102 140 116 116 Temperature (C) 15 9.0 8.0 3.0
Thallium <0.20000 <0.50000 <0.20000 Tin <0.050
Titanium 0.067 0.078 <0.010 <0.010 Turbidity (NTU) 1 104.0 125.0
Vanadium 0.0080 0.0090 <0.0100 <0.0100 <0.0100 Zinc 5 0.016 0.017 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: P9-1	Sheet: 2
---------------------	----------

Date Sampled:		03-Nov-2000
<u>Parameter</u>	ODWS/O	
Alkalinity (CaCO3)	30-500	64
Aluminum	0.1	3.890
Ammonia (as N)		0.12
Antimony		
Arsenic	0.025	
Barium	1	0.070
Beryllium		<0.002
Bicarbonate		
Bismuth		
Boron	5	<0.010
Bromide		
Cadmium	0.005	<0.00010
Calcium		21.0
Carbonate	050	0.0
Chloride	250	2.0
Chromium Cobalt	0.05	<0.010 0.0022
COD		16
Colour (TCU)	5	10
Conductivity (uS/cm)	3	228
Copper	1	0.0050
DOC	5	1.5
Fluoride	1.5	
Hardness (CaCO3)	80-100	90
Iron	0.3	3.93
Lead	0.01	0.0020
Magnesium		9.00
Manganese	0.05	0.110
Molybdenum		<0.010
Nickel		<0.010
Nitrate (as N)	10	<0.10
Nitrite (as N)	1	<0.10
pH (pH units)	6.5-8.5	7.9
Phenois		<0.001
Phosphate (as P)		0.18 0.06
Phosphorus (total) Potassium		3.0
Selenium		3.0
Silicon		8.94
Silver		<0.0001
Sodium	200	5.0
Strontium		0.055
Sulphate	500	17.0
Sulphur		6
TDS	500	120
Temperature (C)	15	8.4
Thallium		<0.00100
<u>Tin</u>		<0.010
Titanium	4	0.100
Turbidity (NTU)	1	0.0070
Vanadium	5	0.0070 0.010
Zinc	J	0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: G10-1 Sheet: 1

Date Sampled: 03-Nov-2000

		00-1404-200
Parameter	ODWS/O	
Alkalinity (CaCO3)	30-500	100
Aluminum	0.1	3.560
Ammonia (as N)		0.21
Barium	1	0.040
Beryllium	_	<0.002
Boron	5	0.030
Cadmium	0.005	<0.00010
Calcium		18.0
Chloride	250	16.0
Chromium	0.05	<0.010
COD COD		0.0022
		11
Conductivity (uS/cm)		507
Copper DOC	1	0.0050
	5	1.8
Hardness (CaCO3)	80-100	74
Lead	0.3	3.65
Magnesium	0.01	0.0010
Manganese	0.05	7.00
Molybdenum	0.05	0.120
Nickel		<0.010
Nitrate (as N)	10	<0.010
Nitrite (as N)	1	<0.10 <0.10
pH (pH units)	6.5-8.5	7.5
Phenois	0.5-0.5	<0.001
Phosphate (as P)		0.69
Phosphorus (total)		0.09
Potassium		4.0
Silicon		9.97
Silver		<0.0001
Sodium	200	35.0
Strontium	200	0.079
Sulphate	500	27.0
Sulphur		9
TDS	500	256
Temperature (C)	15	8.2
Thallium		<0.00100
Tin		<0.010
Titanium		0.080
Vanadium		0.0060
Zinc	5	0.010
		-

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: G10-1 Sheet: 1

Date Sampled:		03-Nov-2000
<u>Parameter</u>	ODWS/O	
1,1,1,2-Tetrachloroethane		<0.60
1,1,1-Trichloroethane		<0.40
1,1,2,2-Tetrachloroethane		<0.60
1,1,2-Trichloroethane		<0.40
1,1-Dichloroethane		<0.40
1,1-Dichloroethylene	14	<0.5000
1,2-Dibromoethane		<1.00
1,2-Dichlorobenzene	200	<0.40
1,2-Dichloroethane	5	<0.700
1,2-Dichloropropane		<0.70
1,3,5-Trimethylbenzene		<0.30
1,3-Dichlorobenzene		<0.40
1,4-Dichlorobenzene	5	<0.400
Benzene	5	<0.5000
Bromodichloromethane		<0.300
Bromoform		<0.400
Bromomethane		<0.500
c-1,3-Dichloropropylene		<0.20
Carbon Tetrachloride	5	<0.900
Chlorobenzene	80	<0.200
Chloroethane		<1.0
Chloroform		1.00
Chloromethane		<1.000
cis-1,2-Dichloroethylene		<0.40
Dibromochloromethane		<0.30
Ethylbenzene	2.4	<0.5000
m/p-Xylene	300	<1.000
Methylene Chloride	50	<4.00
o-Xylene	300	<0.500
Styrene		<0.50
t-1,2-Dichloroethylene	•	<0.4000
t-1,3-Dichloropropylene		<0.20
Tetrachloroethylene	30	<0.30
Toluene	24	<0.5000
Trichloroethylene	50	<0.30
Trichlorofluoromethane		<0.50
Vinyl Chloride	2	<0.500
•		

All VOC's reported in µg/L. All other values reported in mg/L unless otherwise noted.

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: G10-2

Sheet: 1

Date Sampled:

03-Nov-2000

•		00-1101-200
<u>Parameter</u>	ODWS/O	
Alkalinity (CaCO3)	30-500	80
Aluminum	0.1	1.780
Ammonia (as N)	0.1	0.24
Barium	1	0.040
Beryllium	•	<0.002
Boron	5	<0.002
Cadmium	0.005	<0.00010
Calcium	0.000	23.0
Chloride	250	4.0
Chromium	0.05	<0.010
Cobalt	0.00	0.0011
COD		11
Conductivity (uS/cm)		278
Copper	1	0.0020
DOC	5	1.1
Hardness (CaCO3)	80-100	86
lron '	0.3	1.72
Lead	0.01	<0.0010
Magnesium		7.00
Manganese	0.05	0.090
Molybdenum		<0.010
Nickel		<0.010
Nitrate (as N)	10	<0.10
Nitrite (as N)	1	<0.10
pH (pH units)	6.5-8.5	7.7
Phenols		<0.001
Phosphate (as P)		0.75
Phosphorus (total)		0.30
Potassium		2.0
Silicon		9.49
Silver	•	<0.0001
Sodium	200	8.0
Strontium		0.063
Sulphate	500	25.0
Sulphur		8
TDS	500	144
Temperature (C)	15	8.4
Thallium		<0.00100
Tin		<0.010
Titanium		0.060
Vanadium	_	0.0030
Zinc	5	<0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: G10-2 Sheet: 1

Date Sampled:		03-Nov-2000
Parameter	ODWS/O	
1,1,1,2-Tetrachloroethane		<0.60
1,1,1-Trichloroethane		<0.40
1,1,2,2-Tetrachloroethane		<0.60
1,1,2-Trichloroethane		<0.40
1,1-Dichloroethane		<0.40
1,1-Dichloroethylene	14	<0.5000
1,2-Dibromoethane		<1.00
1,2-Dichlorobenzene	200	<0.40
1,2-Dichloroethane	5	<0.700
1,2-Dichloropropane		<0.70
1,3,5-Trimethylbenzene		<0.30
1,3-Dichlorobenzene		<0.40
1,4-Dichlorobenzene	5	<0.400
Benzene	5	<0.5000
Bromodichloromethane		<0.300
Bromoform		<0.400
Bromomethane		<0.500
c-1,3-Dichloropropylene		<0.20
Carbon Tetrachloride	5	<0.900
Chlorobenzene	80	<0.200
Chloroethane		<1.0
Chloroform		1.30
Chloromethane		<1.000
cis-1,2-Dichloroethylene		<0.40
Dibromochloromethane		<0.30
Ethylbenzene	2.4	<0.5000
m/p-Xylene	300	<1.000
Methylene Chloride	50	<4.00
o-Xylene	300	<0.500
Styrene		<0.50
t-1,2-Dichloroethylene	•	<0.4000
t-1,3-Dichloropropylene	00	<0.20
Tetrachloroethylene Toluene	30	0.30
Trichloroethylene	24	<0.5000
Trichlorofluoromethane	50	<0.30
Vinyl Chloride	2	<0.50
- iii, oiiioilde	4	<0.500

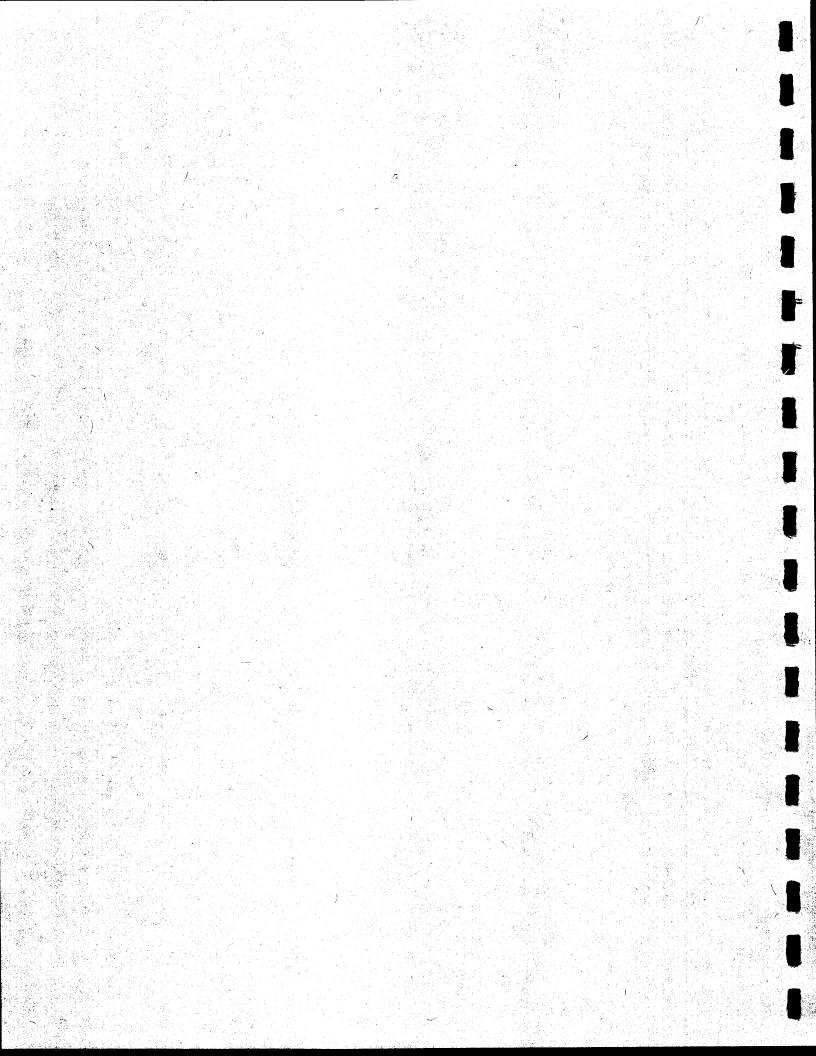
All VOC's reported in $\mu g/L$. All other values reported in mg/L unless otherwise noted.

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: G10-3 Sheet: 1

Date Sampled:		03-Nov-2000
<u>Parameter</u>	ODWS/O	
Alkalinity (CaCO3) Aluminum Ammonia (as N) Barium Beryllium Boron Cadmium Calcium Chloride Chromium Cobalt	30-500 0.1 1 5 0.005 250 0.05	95 1.780 0.18 0.030 <0.002 <0.010 <0.00010 6.0 5.0 <0.010 0.0014
COD Conductivity (uS/cm) Copper DOC Hardness (CaCO3) Iron Lead Magnesium Manganese Molybdenum Nickel Nitrate (as N) Nitrite (as N) pH (pH units) Phenols Phosphate (as P) Phosphorus (total) Potassium Silicon Silver Sodium	1 5 80-100 0.3 0.01 0.05 10 1 6.5-8.5	8 271 0.0060 1.7 19 1.46 0.0010 1.00 0.040 <0.010 <0.010 3.02 <0.10 8.4 <0.001 0.28 0.15 1.0 6.41 <0.0001 40.0 0.027
Strontium Sulphate Sulphur TDS Temperature (C) Thallium Tin Titanium Vanadium Zinc	500 500 15	0.027 17.0 6 180 9.5 <0.00100 <0.010 0.040 0.0100 0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS


Sample Source: G10-3 Sheet: 1

Date Sampled: 03-Nov-2000 <u>Parameter</u> ODWS/O 1,1,1,2-Tetrachloroethane < 0.60 1,1,1-Trichloroethane < 0.40 1,1,2,2-Tetrachloroethane < 0.60 1,1,2-Trichloroethane < 0.40 1,1-Dichloroethane < 0.40 1,1-Dichloroethylene 14 < 0.5000 1,2-Dibromoethane <1.00 1,2-Dichlorobenzene 200 < 0.40 1,2-Dichloroethane 5 < 0.700 1,2-Dichloropropane < 0.70 1,3,5-Trimethylbenzene < 0.30 1,3-Dichlorobenzene <0.40 1,4-Dichlorobenzene 5 < 0.400 Benzene 5 < 0.5000 Bromodichloromethane < 0.300 Bromoform < 0.400 Bromomethane < 0.500 c-1,3-Dichloropropylene < 0.20 Carbon Tetrachioride 5 < 0.900 Chiorobenzene 80 < 0.200 Chloroethane <1.0 Chioroform 0.70 Chloromethane <1.000 cis-1,2-Dichloroethylene <0.40 Dibromochloromethane <0.30 Ethylbenzene 2.4 <0.5000 m/p-Xylene 300 <1.000 Methylene Chloride 50 <4.00 o-Xylene 300 < 0.500 Styrene < 0.50 t-1,2-Dichloroethylene < 0.4000 t-1,3-Dichloropropylene <0.20 Tetrachloroethylene 30 < 0.30 Toluene 24 <0.5000 Trichloroethylene 50 < 0.30 Trichlorofluoromethane < 0.50 Vinyl Chloride 2

All VOC's reported in μg/L. All other values reported in mg/L unless otherwise noted.

< 0.500

APPENDIX C-II
SURFACE WATER SAMPLING STATIONS

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-1						Sheet: 1
Date Sampled:		30-Oct-1991	03-Dec-1997	21-Apr-1998	17 -M ay-1999	02-Sep-1999
<u>Parameter</u>	<u>PWQO</u>					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	75% Bkgd f (pH) 0.02 0.005	154 0.230 <0.10 <0.001	219 0.580 0.07 <0.0005 <0.002	123 0.322 0.04 <0.0005 <0.002	167 <0.030 <0.02	104 0.270 0.08
Barium Beryllium Bicarbonate Bismuth	f (Hardness)	_	0.069 <0.001 <0.001	0.043 <0.001 1.00 <0.001	0.040 <0.010	0.030 <0.010
BOD Boron Bromide	0.2	5	0.025 0.12	0.023 <0.05	0.010	<0.010
Cadmium Calcium Carbonate Chloride	0.0002	<0.00020 67.0 185.0	<0.00010 90.2 266.80 119.0	<0.00 <0.00010 41.7 147.60 85.0	<0.00015 53.0 113.0	<0.00015 30.0 22.0
Chromium Cobalt COD Colour (TCU) Conductivity (uS/cm)	0.0009	<0.002 40 21 932	<0.005 0.0002 19 40 886	<0.005 0.0003 37 145 539	<0.010 <0.0004 40 580	<0.010 <0.0004 13
Conductivity (uS/cm) Copper Cyanide	0.005	<0.0050 <0.005	0.0022	0.0028	<0.0050	225 <0.0050
Dissolved Oxygen DOC Fecal Coliform (per 100mL) Fecal Streptococci (per 100mL)	f (Temp)	30 58	6.9	12.1	9.3 14.9	6.7 4.7
Fluoride Hardness (CaCO3) Iron Lead Magnesium	0.3 f (Alk)	262 0.54 <0.0120 23.00	0.10 344 0.58 <0.0005 28.90	<0.10 158 0.84 <0.0005 13.00	194 0.69 <0.0020 15.00	108 0.59 <0.0020 8.00
Manganese Mercury Molybdenum Nickel Nitrate (as N)	0.0002 0.04 0.025	<0.0001 <0.005 <0.10	0.058 <0.001 <0.001 2.80	0.090 <0.001 <0.001 <0.20	0.210 <0.010 <0.010 0.84	0.120 <0.010 <0.010 0.19
Nitrite (as N) pH (pH units) Phenols Phosphate (as P) Phosphorus (total)	6.5-8.5 0.001 0.03	<0.10 7.7 <0.002 0.20	<0.20 7.7 <0.10 0.04	<0.20 7.7 <1.00 0.05	<0.10 7.8 <0.001 <0.03 0.05	<0.10 6.8 <0.001 0.04 0.07
Potassium Selenium Silicon	0.1	6.0 <0.001	4.0 <0.002	1.8 <0.002	3.0 2.10	3.0 3.90
Silver Sodium Strontium Sulphate Sulphur	0.0001	<0.0002 78.0	<0.0001 65.6 0.451 58.2	<0.0001 52.6 0.287 22.9	<0.0001 68.0 0.341 26.0 7	<0.0001 20.0 0.143 10.0 4
TDS Temperature (C) Thallium Tin	0.0003		497 <0.001	291 <0.001	7 396 20.0 <0.00500 <0.050	168 17.0 <0.00500 <0.050
Titanium TOC TSS Turbidity (NTU)		12 30 0.6	0.019	0.014	<0.010	<0.010
Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	<0.020 0.007	0.000 0.0007 0.008	0.000 0.0024 0.004	<0.020 <0.0070 <0.010	<0.100 <0.0070 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: SW-1					
Date Sampled:		20-Oct-1999	08-Aug-2000	03-Nov-2000	23-Dec-2000
Parameter	<u>PWQO</u>				
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony	75% Bkgd f (pH) 0.02	216 <0.030 0.03	141 0.130 0.08	228 0.310 0.04	NS
Arsenic Barium Beryllium Bicarbonate	0.005 f (Hardness)	0.070 <0.010	0.040 <0.002	0.060 <0.002	
Bismuth BOD Boron Bromide	0.2	0.030	0.050	0.030	
Cadmium Calcium Carbonate Chloride	0.0002	<0.00015 81.0	<0.00010 42.0	<0.00010 66.0	
Chromium Cobalt COD	0.0009	148.0 <0.010 <0.0004 23	52.0 <0.010 0.0003 38	104.0 <0.010 0.0003 38	
Colour (TCU) Conductivity (uS/cm) Copper Cyanide	0.005	620 <0.0050	468 0.0020	890 0.0010	
Dissolved Oxygen DOC Fecal Coliform (per 100mL) Fecal Streptococci (per 100mL)	f (Temp)	9.6	7.3 11.4	11.5 7.5	
Fluoride Hardness (CaCO3)	0.3	293 0.21	150 0.18	260 0.41	
Lead Magnesium Manganese	f (Alk)	<0.0020 22.00 0.010	<0.0010 11.00 0.030	<0.0010 23.00 0.040	
Mercury Molybdenum Nickel Nitrate (as N)	0.0002 0.04 0.025	<0.010 <0.010 2.66	<0.010 <0.010 1.90	<0.010 <0.010 1.39	
Nitrite (as N) pH (pH units) Phenols	6.5-8.5 0.001	<0.10 7.7 0.001	<0.10 7.7 0.002	<0.10 7.3 <0.001	
Phosphate (as P) Phosphorus (total) Potassium Selenium	0.03 0.1	0.03 0.04 5.0	0.24 0.17 5.0	<0.03 0.06 4.0	
Silicon Silver Sodium Strontium	0.0001	3.90 <0.0001 113.0 0.622	3.55 0.0002 42.0 0.249	3.52 <0.0001 71.0 0.380	
Sulphate Sulphur TDS Temperature (C)		60.0 19 560 1.0	22.0 9 272 20.1	30.0 10 472 3.4	
Thallium Tin Titanium TOC TSS	0.0003	<0.00500 <0.050 <0.010	<0.00100 <0.010 <0.010	<0.00100 <0.010 0.010	
Turbidity (NTU) Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	<0.020 <0.0070 <0.010	<0.020 <0.0100 <0.010	<0.020 0.0020 <0.010	

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-1 Sheet: 2

Date Sampled:		20-Oct-1999	08-Aug-2000	03-Nov-2000	23-Dec-2000
Parameter	<u>PWQO</u>				
1,1,1,2-Tetrachloroethane	20			<0.60	
1,1,1-Trichloroethane	10			<0.40	
1,1,2,2-Tetrachloroethane				<0.60	
1,1,2-Trichloroethane	800			<0.40	
1,1-Dichloroethane	200			<0.40	
1,1-Dichloroethylene	40			<0.5000	
1,2-Dibromoethane				<1.00	
1,2-Dichlorobenzene	2.5			<0.40	
1,2-Dichloroethane	100			<0.700	
1,2-Dichloropropane	0.7			<0.70	
1,3,5-Trimethylbenzene				<0.30	
1,3-Dichlorobenzene	2.5			< 0.40	
1,4-Dichlorobenzene	4			<0.400	
Benzene	100			<0.5000	
Bromodichloromethane	200			<0.300	
Bromoform	60			< 0.400	
Bromomethane	0.9			<0.500	
c-1,3-Dichloropropylene				<0.20	
Carbon Tetrachloride				<0.900	
Chlorobenzene	15			<0.200	
Chloroethane				<1.0	
Chloroform				2.10	
Chloromethane	700			<1.000	
cis-1,2-Dichloroethylene				<0.40	
Dibromochloromethane	_			<0.30	
Ethylbenzene	8			<0.5000	
m/p-Xylene	32			<1.000	
Methylene Chloride	100			<4.00	
o-Xylene Styrene	40			<0.500	
	4			<0.50	
t-1,2-Dichloroethylene				<0.4000	
t-1,3-Dichloropropylene Tetrachloroethylene	7			<0.20	
Toluene	50			<0.30	
Trichloroethylene	0.8			<0.5000	
Trichlorofluoromethane	20			<0.30	
Vinyl Chloride	600			<0.50	
viriyi Oriloride	600			<0.500	

All VOC's reported in $\mu g/L$. All other values reported in mg/L unless otherwise noted.

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-2						Sheet: 1
Date Sampled:		30-Oct-1991	03-Dec-1997	21-Apr-1998	17 -M ay-1999	02-Sep-1999
Parameter	<u>PWQO</u>					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic Barium Beryllium Bicarbonate Bismuth	75% Bkgd f (pH) 0.02 0.005 f (Hardness)	143 0.280 <0.10 <0.001	209 0.394 0.08 <0.0005 <0.002 0.066 <0.001	117 0.346 0.03 <0.0005 <0.002 0.040 <0.001 1.00 <0.001	166 0.380 <0.02 0.060 <0.010	106 0.530 <0.10 0.020 <0.010
BOD Boron	0.2	4	0.024	0.018	<0.010	<0.010
Bromide Cadmium	0.0002	<0.00020	0.024 0.13 <0.00010	<0.05 <0.00010	<0.00015	0.00018
Calcium Carbonate Chloride Chromium		69.0 173.0 <0.002	77.3 254.60 120.0 <0.005	42.0 140.20 80.7 <0.005	53.0 114.0 <0.010	32.0 26.0 <0.010
Cobalt COD Colour (TCU) Conductivity (uS/cm)	0.0009	41 21 880	0.0002 28 48 870	0.0003 36 137 522	<0.0004 38 560	<0.0004 20 260
Copper Cyanide Dissolved Oxygen	0.005 f (Temp)	<0.0050 <0.005	0.0014	0.0022	<0.0050 10.1	<0.0050 13.5
DOC Fecal Coliform (per 100mL) Fecal Streptococci (per 100mL) Fluoride	· ((op)	31 60	6.6 0.10	10.2 <0.10	14.6	7.4
Hardness (CaCO3) fron Lead Magnesium	0.3 f (Alk)	255 0.52 <0.0070 20.00	298 0.53 <0.0005 25.30	159 0.90 <0.0005 13.10	194 0.81 <0.0020 15.000	113 0.76 <0.0020 8.00
Manganese Mercury Molybdenum Nickel Nitrate (as N)	0.0002 0.04 0.025	<0.0001 <0.005 <0.10	0.044 <0.001 <0.001 2.66	0.088 <0.001 <0.001 <0.20	0.200 <0.010 <0.010 <0.10	0.130 <0.010 <0.010 <0.10
Nitrite (as N) pH (pH units) Phenols Phosphate (as P) Phosphorus (total)	6.5-8.5 0.001 0.03	<0.10 7.6 <0.002 0.50	<0.20 7.7 <0.10 0.04	<0.20 7.7 <1.00 0.05	<0.10 7.7 <0.001 <0.03 0.22	<0.10 7.1 <0.001 <0.03 0.09
Potassium Selenium Silicon	0.1	6.0 <0.001	3.7 <0.002	1.8 <0.002	3.0 2.20	3.0 4.50
Silver Sodium Strontium Sulphate Sulphur	0.0001	0.0002 77.0	0.0001 62.5 0.450 58.0	<0.0001 52.7 0.270 22.5	<0.0001 67.0 0.572 26.0 7	<0.0001 22.0 0.154 13.0 5
TDS Temperature (C) Thallium Tin	0.0003		472 <0.001	283 <0.001	400 21.0 <0.00500 <0.050	176 24.0 <0.00500 <0.050
Titanium TOC TSS		10 18	0.021	0.019	<0.010	0.010
Turbidity (NTU) Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	0.4 <0.020 <0.005	6.1 0.000 0.0005 0.004	8.3 0.000 0.0024 0.002	<0.020 <0.0070 <0.010	<0.100 <0.0070 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: SW-2					
Date Sampled:		20-Oct-1999	08-Aug-2000	03-Nov-2000	23-Dec-2000
Parameter	<u>PWQO</u>				
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	75% Bkgd f (pH) 0.02	213 0.130 0.03	139 0.110 0.05	223 <0.050 0.03	NS
Barium Beryllium Bicarbonate Bismuth	0.005 f (Hardness)	0.070 <0.010	0.050 <0.002	0.060 <0.002	
BOD Boron Bromide	0.2	0.030	0.040	0.030	
Cadmium Calcium	0.0002	<0.00015 80.0	<0.00010 40.0	<0.00010 66.0	
Carbonate Chloride Chromium Cobalt COD	0.0009	159.0 <0.010 <0.0004 18	49.0 <0.010 0.0003 38	104.0 <0.010 0.0002 35	
Colour (TCU) Conductivity (uS/cm) Copper Cyanide	0.005	620 <0.0050	450 0.0030	874 <0.0010	
Dissolved Oxygen DOC Fecal Coliform (per 100mL)	f (Temp)	9.1	6.1 11.3	12.5 7.9	
Fecal Streptococci (per 100mL) Fluoride					
Hardness (CaCO3) Iron Lead	0.3 f (Alk)	290 0.18 <0.0020	145 0.54 <0.0010	256 0.41 <0.0010	
Magnesium Manganese	. ,	22.00 0.010	11.00 0.040	22.00 0.040	
Mercury Molybdenum Nickel Nitrate (as N)	0.0002 0.04 0.025	<0.010 <0.010 2.44	<0.010 <0.010 1.75	<0.010 <0.010 1.37	
Nitrite (as N) pH (pH units)	6.5-8.5	<0.10 7.7	<0.10 7.4	<0.10 7.4	
Phenols Phosphate (as P) Phosphorus (total) Potassium	0.001	<0.001 0.03 0.03 5.0	0.001 0.26 0.19 5.0	<0.001 <0.03 0.03 4.0	
Selenium Silicon Silver Sodium	0.1 0.0001	3.90 <0.0001 112.0	4.27 <0.0001 42.0	3.60 <0.0001 66.0	
Strontium Sulphate Sulphur TDS Temperature (C)		0.665 62.0 19 564 0.0	0.250 21.0 9 288 19.9	0.380 30.0 10 464 4.5	
Thallium Tin Titanium TOC TSS	0.0003	<0.00500 <0.050 <0.010	<0.00100 <0.010 0.020	<0.00100 <0.010 0.020	
Turbidity (NTU) Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	<0.020 <0.0070 <0.010	<0.020 <0.0100 <0.010	<0.020 <0.0010 <0.010	

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-3						Sheet: 1
Date Sampled:		30-Oct-1991	03-Dec-1997	21-Apr-1998	17-May-1999	02-Sep-1999
<u>Parameter</u>	PWQO					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic Barium Beryllium Bicarbonate Bismuth	75% Bkgd f (pH) 0.02 0.005 f (Hardness)	104 0.290 <0.10 <0.001	206 0.336 0.08 <0.0005 <0.002 0.066 <0.001	116 0.378 0.05 <0.0005 <0.002 0.043 <0.001 1.00 <0.001	163 <0.030 0.08 0.040 <0.010	138 0.230 0.27 0.030 <0.010
BOD Boron	0.2	4	0.025	0.020	0.010	0.040
Bromide Cadmium Calcium	0.0002	<0.00020 53.0	0.025 0.12 <0.00010 78.1	<0.020 <0.05 <0.00010 40.9	<0.00015 51.0	<0.00015 43.0
Carbonate Chloride Chromium		141.0 <0.002	251.00 116.0 <0.005	139.00 76.9 <0.005	92.0 <0.010	17.0 <0.010
Cobalt COD Colour (TCU)	0.0009	37 16	0.0002 20 44	0.0003 38 143	<0.0004 45	<0.0004 20
Conductivity (uS/cm) Copper Cyanide	0.005	774 <0.0050 <0.005	849 0.0014	515 0.0026	530 <0.0050	280 <0.0050
Dissolved Oxygen DOC Fecal Coliform (per 100mL)	f (Temp)	73	7.4	10.9	9.2 13.1	10.4 8.0
Fecal Streptococci (per 100mL) Fluoride Hardness (CaCO3)		48	0.10 301	<0.10 153	185	157
fron Lead Magnesium	0.3 f (Alk)	0.31 <0.0050 18.00	0.52 <0.0005 25.60	0.84 <0.0005 12.40	0.81 <0.0020 14.00	0.47 <0.0020 12.00
Manganese Mercury Molybdenum Nickel	0.0002 0.04 0.025	<0.0001 0.008	0.053 <0.001 <0.001	0.093 <0.001 <0.001	0.230 <0.010 <0.010	0.130 <0.010 <0.010
Nitrate (as N) Nitrite (as N) pH (pH units)	6.5-8.5	<0.10 <0.10 <0.10 7.7	2.67 <0.20 7.7	<0.20 <0.20 7.7	<0.10 <0.10 7.8	0.27 0.20 7.0
Phenois Phosphate (as P) Phosphorus (total)	0.001	<0.002 0.24	<0.10 0.03	<1.00 0.05	<0.001 <0.03 0.08	<0.001 <0.03 0.11
Potassium Selenium Silicon	0.1	5.0 <0.001	3.7 <0.002	3.4 <0.002	2.90	5.70
Silver Sodium Strontium Sulphate Sulphur	0.0001	0.0002 58.0	<0.0001 64.7 0.445 57.8	<0.0001 47.9 0.271 22.3	<0.0001 58.0 0.301 26.0 7	<0.0001 17.0 0.142 24.0 8
TDS Temperature (C) Thallium	0.0003		470	273	364 17.5 <0.00500	212 17.0 <0.00500
Tin Titanium TOC TSS		9 13	<0.001 0.018	<0.001 0.016	<0.050 <0.010	<0.050 <0.010
Turbidity (NTU) Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	0.4 <0.020 0.006	6.7 0.000 <0.0005 0.005	8.8 0.000 0.0024 0.090	<0.020 <0.0070 <0.010	<0.100 <0.0070 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-3						Sheet: 2
Date Sampled:		19-Oct-1999	08-Aug-2000	03-Nov-2000	23-Dec-2000	
<u>Parameter</u>	<u>PWQO</u>					
Alkalinity (CaCO3) Aluminum Ammonia (as N)	75% Bkgd f (pH)	157 <0.030 0.43	136 0.110 0.11	171 <0.050 0.08	165 0.380 0.20	
Antimony Arsenic Barium	0.02 0.005	0.040	0.040	0.050	0.050	
Beryllium Bicarbonate Bismuth BOD	f (Hardness)	<0.010	<0.002	<0.002	<0.002	
Boron Bromide	0.2	0.040	0.050	0.030	0.020	
Cadmium Calcium Carbonate	0.0002	<0.00015 44.0	<0.00010 39.0	<0.00010 64.0	<0.00010 48.0	
Chloride Chromium Cobalt COD Colour (TCU)	0.0009	8.0 <0.010 <0.0004 16	50.0 <0.010 0.0004 35	96.0 <0.010 <0.0002 21	97.0 <0.010 0.0005 45	
Conductivity (uS/cm) Copper Cyanide	0.005	240 <0.0100	440 0.0020	998 <0.0010	918 0.0020	
Dissolved Oxygen DOC Fecal Coliform (per 100mL)	f (Temp)	6.4	5.5 11.6	13.6 7.4	10.5 9.2	
Fecal Streptococci (per 100mL) Fluoride				•••		
Hardness (CaCO3) Iron	0.3	159 0.43	143 0.14	246 0,41	182 0.61	
Lead Magnesium	f (Alk)	<0.0020 12.00	<0.0010 11.00	<0.0010 21.00	<0.0010 15.00	
Manganese	0.0000	0.120	0.030	0.040	0.150	
Mercury Molybdenum	0.0002 0.04	<0.010	<0.010	<0.010	<0.010	
Nickel	0.025	<0.010	<0.010	<0.010	<0.010	
Nitrate (as N) Nitrite (as N)		0.18 <0.10	1.83 <0.10	1.27 <0.10	1.36 <0.10	
pH (pH units)	6.5-8.5	7.3	7.4	7.5	6.8	
Phenois	0.001	<0.001	0.001	<0.001	<0.001	
Phosphate (as P) Phosphorus (total)	0.03	<0.03 0.10	0.30 0.20	<0.03 0.02	0.05 0.05	
Potassium	0.00	4.0	5.0	4.0	3.0	
Selenium	0.1	7.00	0.00	. ==		
Silicon Silver Sodium	0.0001	7.30 <0.0001 11.0	3.33 <0.0001 39.0	3.77 <0.0001 63.0	4.73 <0.0001	
Strontium Sulphate		0.124 28.0	0.239 21.0	0.356 29.0	61.0 0.330 28.0	
Sulphur		10	9	10	9	
TDS		200	308	388	404	
Temperature (C) Thallium	0.0003	0.0 <0.00500	19.7 <0.00100	4.5 <0.00100	0.9 <0.00100	
Tin	0.0000	<0.050	<0.010	<0.010	<0.010	
Titanium TOC		<0.010	<0.010	0.010	0.010	
TSS Turbidity (NTU)						
Unionized Ammonia	0.02	<0.020	<0.020	<0.020	<0.020	
Vanadium	0.006	<0.0070	<0.0100	<0.0010	0.0020	
Zinc	0.03	<0.010	<0.010	<0.010	<0.010	

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-3						Sheet: 2
Date Sampled:		19-Oct-1999	08-Aug-2000	03-Nov-2000	23-Dec-2000	
<u>Parameter</u>	<u>PWQO</u>					
1,1,1,2-Tetrachloroethane	20			<0.60		
1,1,1-Trichloroethane	10			<0.40 <0.60		
1,1,2,2-Tetrachloroethane				<0.40		
1,1,2-Trichloroethane	800			<0.40		
1,1-Dichloroethane	200			<0.5000		
1,1-Dichloroethylene	40			<1.00		
1,2-Dibromoethane	2.5			<0.40		
1,2-Dichlorobenzene	100			<0.700		
1,2-Dichloroethane 1,2-Dichloropropane	0.7			<0.70		
1,3,5-Trimethylbenzene	0.7			<0.30		
1.3-Dichlorobenzene	2.5			<0.40		
1,4-Dichlorobenzene	4			<0.400		
Benzene	100			<0.5000		
Bromodichloromethane	200			<0.300		
Bromoform	60			<0.400		
Bromomethane	0.9			<0.500		
c-1,3-Dichloropropylene				<0.20		
Carbon Tetrachloride				<0.900		
Chlorobenzene	15			<0.200		
Chloroethane				<1.0		
Chloroform				<0.50		
Chloromethane	700			<1.000		
cis-1,2-Dichloroethylene				<0.40		
Dibromochloromethane				<0.30		
Ethylbenzene	8			<0.5000		
m/p-Xylene	32			<1.000 <4.00		
Methylene Chloride	100			<0.500		
o-Xylene	40			<0.50		
Styrene	4			<0.4000		
t-1,2-Dichloroethylene	· _			<0.20		
t-1,3-Dichloropropylene	7			<0.30		
Tetrachloroethylene	50			<0.5000		
Toluene	0.8 20			<0.30		
Trichloroethylene	20			<0.50		
Trichlorofluoromethane	600			<0.500		
Vinyl Chloride	900					

All VOC's reported in μ g/L. All other values reported in mg/L unless otherwise noted.

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-4						Sheet: 1
Date Sampled:		03-Dec-1997	21-Apr-1998	17-May-1999	02-Sep-1999	19-Oct-1999
<u>Parameter</u>	<u>PWQO</u>					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	75% Bkgd f (pH) 0.02 0.005	135 0.013 0.15 <0.0005 <0.002	128 0.037 0.46 <0.0005 <0.002	128 <0.030 0.33	134 0.110 0.56	146 <0.030 0.36
Barium Beryllium Bicarbonate Bismuth	f (Hardness)	0.038 <0.001 <0.001	0.033 <0.001 1.00 <0.001	0.030 <0.010	0.040 <0.010	0.040 <0.010
Boron Bromide	0.2	0.020 <0.05	0.034 <0.05	0.020	0.030	0.010
Cadmium Calcium Carbonate	0.0002	<0.00010 46.3 164.40	<0.00010 38.7 153.70	<0.00015 36.0	<0.00015 42.0	<0.00015 40.0
Chloride Chromium Cobalt COD Colour (TCU)	0.0009	5.3 <0.005 <0.0001 11 12	6.0 0.001 <0.0050 15 22	5.0 <0.010 <0.0004 15	6.0 <0.010 <0.0004 15	5.0 <0.010 <0.0004 14
Conductivity (uS/cm) Copper Dissolved Oxygen DOC	0.005 f (Temp)	515 <0.0001 4.1	312 0.0011 4.1	205 <0.0050 8.6 4.8	250 <0.0050 9.1 5.0	210 <0.0100 10.7 5.7
Fluoride Hardness (CaCO3) Iron Lead	0.3 f (Alk)	0.10 169 0.35 <0.0005	<0.10 142 0.34 <0.0005	131 0.56 <0.0020	154 0.92 <0.0020	145 0.67 <0.0020
Magnesium Manganese Molybdenum Nickel	0.04 0.025	12.80 0.070 <0.001 <0.001	10.90 0.126 <0.001 <0.001	10.00 0.110 <0.010 <0.010	12.00 0.140 <0.010 <0.010	11.00 0.070 <0.010 <0.010
Nitrate (as N) Nitrite (as N) pH (pH units)	6.5-8.5	0.37 <0.02 7.8	<0.20 <0.20 7.7	0.28 <0.10 7.4	0.21 0.10 6.8	0.11 <0.10 7.3
Phenois Phosphate (as P) Phosphorus (total) Potassium	0.001 0.03	<0.10 0.01 1.8	<1.00 0.04 2.6	<0.001 0.02 0.07 2.0	<0.001 0.04 0.45 3.0	<0.001 0.03 0.04 2.0
Selenium Silicon Silver	0.1 0.0001	<0.002 0.0001	0.002 <0.0001	6.90 <0.0001	7.20 <0.0001	7.30 <0.0001
Sodium Strontium Sulphate Sulphur	0.3001	7.5 0.098 26.4	8.6 0.094 24.3	8.0 0.079 19.0 7	8.0 0.088 22.0 7	8.0 0.099 19.0 7
TDS Temperature (C) Thallium	0.0003	181	168	164 12.0 <0.00500	164 11.0 <0.00500	176 0.0 <0.00500
Tin Titanium Turbidity (NTU)	0.00	<0.001 <0.005 0.5	<0.001 <0.005 1.3	<0.050 <0.010	<0.050 <0.010	<0.050 <0.010
Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	0.001 <0.0005 <0.002	0.001 0.0012 <0.002	<0.020 <0.0070 <0.010	<0.100 <0.0070 <0.010	<0.020 <0.0070 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: SW-4				
Date Sampled:		08-Aug-2000	01-Nov-2000	23-Dec-2000
<u>Parameter</u>	<u>PWQO</u>			
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	75% Bkgd f (pH) 0.02 0.005	187 <0.050 5.95	156 <0.050 0.31	NS
Barium Beryllium Bicarbonate Bismuth	f (Hardness)	0.050 <0.002	0.030 <0.002	
Boron Bromide	0.2	0.040	0.030	
Cadmium Calcium Carbonate	0.0002	<0.00010 51.0	<0.00010 44.0	
Chloride Chromium Cobalt	0.0009	12.0 <0.010 0.0006	4.0 <0.010 <0.0002	
COD Colour (TCU) Conductivity (uS/cm)		30 396	17 428	
Copper Dissolved Oxygen DOC Fluoride	0.005 f (Temp)	<0.0010 7.9 8.9	<0.0010 9.1 5.6	
Hardness (CaCO3)	0.3	173 0.39	155 0.96	
Lead Magnesium Manganese	f (Alk)	<0.0010 11.00 0.280	<0.0010 11.00 0.070	
Molybdenum Nickel Nitrate (as N)	0.04 0.025	<0.010 <0.010 0.27	0.010 <0.010 <0.10	
Nitrite (as N) pH (pH units) Phenols	6.5-8.5 0.001	<0.10 7.4 0.001	<0.10 6.9 <0.001	
Phosphate (as P) Phosphorus (total) Potassium Selenium	0.03	1.56 0.56 5.0	<0.03 0.09 2.0	
Silicon Silver Sodium	0.1 0.0001	7.42 <0.0001 11.0	7.51 <0.0001 9.0	
Strontium Sulphate Sulphur TDS Temperature (C)		0.132 27.0 11 232 18.2	9.0 0.101 16.0 5 248 7.1	
Thallium Tin Titanium Turbidity (NTU)	0.0003	<0.00100 <0.010 <0.010	<0.00100 <0.010 <0.010	
Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	0.051 <0.0100 <0.010	<0.020 0.0020 <0.010	

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-5						Sheet: 1
Date Sampled:		03-Dec-1997	21-Apr-1998	17-May-1999	02-Sep-1999	19-Oct-1999
<u>Parameter</u>	<u>PWQO</u>					
Alkalinity (CaCO3)	75% Bkgd	144	137	140	147	204
Aluminum	f (pH)	0.012	0.036	<0.030	0.030	0.130
Ammonia (as N)	0.00	0.30	0.64	0.48	0.58	0.32
Antimony	0.02	<0.0005	<0.0005			
Arsenic	0.005	<0.002	<0.002	0.040	-0.040	0.070
Barium Bandium	f (Hordness)	0.042 <0.001	0.037 <0.001	0.040 <0.010	<0.010	0.070
Beryllium Bicarbonate	f (Hardness)	<0.001	1.00	~ 0.010	<0.010	<0.010
Bismuth		<0.001	<0.001			
Boron	0.2	0.034	0.047	0.040	0.060	0.020
Bromide	U.L	0.06	<0.05	0.040	0.000	0.020
Cadmium	0.0002	<0.00010	<0.00010	<0.00015	<0.00015	<0.00015
Calcium	0.0002	51.8	45.2	41.0	49.0	67.0
Carbonate		175.40	164.60		10.0	01.0
Chloride		8.5	8.1	8.0	11.0	137.0
Chromium		<0.005	<0.005	<0.010	<0.010	<0.010
Cobalt	0.0009	0.0001	0.0002	<0.0004	< 0.0004	<0.0004
COD		11	16	20	15	24
Colour (TCU)		10	27			
Conductivity (uS/cm)		352	346	250	290	615
Copper	0.005	<0.0005	0.0011	<0.0050	<0.0050	<0.0100
Dissolved Oxygen	f (Temp)			9.8	8.8	
DOC		4.5	4.7	5.8	5.4	9.1
Fluoride		0.10	<0.10			
Hardness (CaCO3)		188	165	148	180	250
Iron	0.3	0.41	0.51	0.54	0.37	0.30
Lead	f (Alk)	<0.0005	<0.0005	<0.0020	0.0030	<0.0020
Magnesium		14.30	12.60 0.174	11.00	14.00	20.00
Manganese Molybdenum	0.04	0.114 <0.001	<0.001	0.160 <0.010	0.160	<0.010
Nickel	0.025	<0.001	<0.001	<0.010	<0.010	<0.010
Nitrate (as N)	0.025	0.32	<0.20	0.31	<0.010 0.87	<0.010 2.39
Nitrite (as N)		<0.02	<0.20	<0.10	0.18	<0.10
pH (pH units)	6.5-8.5	7.7	7.6	7.5	7.0	6.7
Phenois	0.001	* • •	7.0	<0.001	<0.001	<0.001
Phosphate (as P)	0.00.	<0.10	<1.00	<0.03	<0.03	<0.03
Phosphorus (total)	0.03	0.02	0.03	0.05	0.05	0.03
Potassium		3.2	4.1	4.0	5.0	5.0
Selenium	0.1	<0.002	<0.002			
Silicon				6.80	7.10	4.50
Silver	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001
Sodium		9.1	11.4	10.0	13.0	87.0
Strontium		0.110	0.110	0.102	0.119	0.594
Sulphate		33.0	28.3	27.0	34.0	57.0
Sulphur			100	9	11	19
TDS		206	192	184	220	516
Temperature (C) Thallium	0.0003			13.0 <0.00500	12.0	3.0
Thailium Tin	0.0003	<0.001	<0.001	<0.00500	<0.00500	<0.00500
Titanium		<0.001 <0.005	<0.001	<0.050	<0.050 <0.010	<0.050
Turbidity (NTU)		0.7	1.4	-0.010	~0.010	<0.010
Unionized Ammonia	0.02	0.001	0.001	<0.020	<0.100	<0.020
Vanadium	0.006	<0.0005	0.0011	<0.020	<0.0070	<0.020
Zinc	0.03	<0.002	<0.002	<0.010	<0.010	<0.010
					0.010	-0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2

Sample Source: SW-5				
Date Sampled:		08-Aug-2000	01-Nov-2000	23-Dec-2000
Parameter	<u>PWQO</u>			
Alkalinity (CaCO3) Aluminum Ammonia (as N) Antimony Arsenic	75% Bkgd f (pH) 0.02 0.005	191 <0.050 5.47	163 <0.050 0.35	NS
Barium Beryllium Bicarbonate	f (Hardness)	0.050 <0.002	0.050 <0.002	
Bismuth Boron	0.2	0.050	0.050	
Bromide Cadmium Calcium Carbonate	0.0002	<0.00010 53.0	<0.00010 47.0	
Chloride Chromium Cobalt	0.0009	13.0 <0.010 0.0006	7.0 <0.010 0.0008	
COD Colour (TCU) Conductivity (uS/cm)	0.005	28 418 0.0010	30 390 0.0020	
Copper Dissolved Oxygen DOC Fluoride	f (Temp)	7.2 8.7	8.4 6.8	
Hardness (CaCO3) Iron Lead	0.3 f (Alb)	182 0.41	171 2.14 <0.0010	
Magnesium Manganese	f (Alk)	<0.0010 12.00 0.220	13.00 0.280	
Molybdenum Nickel Nitrate (as N)	0.04 0.025	<0.010 <0.010 0.38	<0.010 <0.010 0.20	
Nitrite (as N) pH (pH units) Phenols	6.5-8.5 0.001	<0.10 7.4 <0.001	<0.10 7.1 <0.001 <0.03	
Phosphate (as P) Phosphorus (total) Potassium Selenium	0.03 0.1	1.18 0.51 6.0	0.25 4.0	
Silicon Silver Sodium	0.0001	7.52 <0.0001 13.0	7.59 <0.0001 10.0	
Strontium Sulphate Sulphur TDS		0.145 30.0 12 256	0.127 21.0 7 256	
Temperature (C) Thallium Tin Titanium	0.0003	15.9 <0.00100 <0.010 <0.010	7.0 <0.00100 <0.010 0.020	
Turbidity (NTU) Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	0.040 <0.0100 <0.010	<0.020 0.0030 <0.010	

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-6						Sheet: 1
Date Sampled:		17-May-1999	02-Sep-1999	19-Oct-1999	08-Aug-2000	01-Nov-2000
<u>Parameter</u>	<u>PWQO</u>					
Alkalinity (CaCO3) Aluminum Ammonía (as N) Barium Beryllium Boron Cadmium Calcium	75% Bkgd f (pH) f (Hardness) 0.2 0.0002	132 <0.030 0.03 0.030 <0.010 <0.010 0.00019 34.0	145 <0.030 0.06 0.040 <0.010 <0.010 0.00017 41.0	154 <0.030 <0.02 0.040 <0.010 <0.010 <0.00015 39.0	204 <0.050 7.07 0.040 <0.002 0.020 <0.00010 53.0	148 <0.050 0.70 0.020 <0.002 <0.010 <0.00010 39.0
Chloride Chromium Cobalt COD Conductivity (uS/cm)	0.0009	2.0 <0.010 <0.0004 15 205	2.0 <0.010 <0.0004 15 230	2.0 <0.010 <0.0004 16 210	11.0 <0.010 0.0006 38 420	2.0 <0.010 0.0003 22 375
Copper Dissolved Oxygen DOC Hardness (CaCO3)	0.005 f (Temp)	<0.0050 7.5 4.1 126	<0.0050 7.6 6.6 156	<0.0100 8.0 5.3 147	<0.0010 5.0 10.4 186	<0.0010 9.0 4.5 151
Iron Lead Magnesium Manganese	0.3 f (Alk)	0.09 <0.0020 10.00 0.120	0.13 <0.0020 13.00 0.120	0.40 <0.0020 12.00 0.040	0.21 <0.0010 13.00 0.430	0.06 <0.0010 13.00 0.030
Molybdenum Nickel Nitrate (as N) Nitrite (as N)	0.04 0.025	<0.010 <0.010 0.23 <0.10	<0.010 <0.010 0.26 <0.10	<0.010 <0.010 0.17 <0.10	<0.010 <0.010 0.33 <0.10	<0.010 <0.010 <0.10 <0.10
pH (pH units) Phenols Phosphate (as P) Phosphorus (total)	6.5-8.5 0.001 0.03	7.5 <0.001 0.05 0.07	6.7 <0.001 0.05 0.07	7.5 <0.001 0.06 0.04	7.6 0.002 2.16 0.73	7.2 <0.001 <0.03 0.01
Potassium Silicon Silver	0.0001	1.0 7.70 <0.0001	1.0 8.00 <0.0001	1.0 8.30 <0.0001	4.0 8.25 <0.0001	1.0 7.59 <0.0001
Sodium Strontium Sulphate Sulphur TDS Temperature (C)		7.0 0.071 12.0 5 148 11.0	6.0 0.076 12.0 4 172 11.0	7.0 0.093 12.0 4 168 0.0	11.0 0.135 22.0 9 260	4.0 0.085 10.0 3 216
Temperature (C) Thallium Tin Titanium	0.0003	<0.00500 <0.050 <0.010	<0.00500 <0.050 <0.010	<0.00500 <0.050 <0.010	16.0 <0.00100 <0.010 <0.010	7.2 <0.00100 <0.010 <0.010
Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	<0.020 <0.0070 <0.010	<0.100 <0.0070 <0.010	<0.020 <0.0070 <0.010	0.082 <0.0100 <0.010	<0.020 <0.0010 <0.010

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

23-Dec-2000

Sample Source: SW-6

Sheet: 2

PWQO Parameter

NS 75% Bkgd Alkalinity (CaCO3)

Aluminum f (pH)

Ammonia (as N)

Date Sampled:

Barium

f (Hardness) Beryllium

Boron 0.2 0.0002

Cadmium Calcium

Chloride Chromium

0.0009 Cobalt

COD Conductivity (uS/cm)

0.005 Copper

Dissolved Oxygen f (Temp) DOC

Hardness (CaCO3)

0.3 Iron f (Alk) Lead

Magnesium Manganese

0.04 Molybdenum 0.025 Nickel

Nitrate (as N) Nitrite (as N)

6.5-8.5 pH (pH units) 0.001 Phenols

Phosphate (as P)

Phosphorus (total) 0.03

Potassium

Silicon 0.0001

Silver Sodium

Strontium Sulphate Sulphur TDS

Temperature (C)

Thallium 0.0003

Tin

Titanium

0.02 Unionized Ammonia 0.006 Vanadium 0.03 Zinc

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sample Source: SW-7						Sheet: 1
Date Sampled:		17-May-1999	02-Sep-1999	19-Oct-1999	08-Aug-2000	03-Nov-2000
<u>Parameter</u>	<u>PWQO</u>					
Alkalinity (CaCO3) Aluminum Ammonia (as N) Barium Beryllium Boron Cadmium Calcium Chloride Chromium Cobalt COD Conductivity (uS/cm)	75% Bkgd f (pH) f (Hardness) 0.2 0.0002	476 <0.030 0.22 0.210 <0.010 0.450 <0.00015 135.0 57.0 <0.010 <0.0004 70 930	NS	NS	514 <0.050 0.34 0.120 <0.002 0.570 <0.00010 136.0 40.0 <0.010 0.0004 68 1040	534 1.080 0.85 5.170 <0.002 0.570 0.00030 142.0 43.0 0.010 0.0029 45
Copper Dissolved Oxygen DOC Hardness (CaCO3) Iron	0.005 f (Temp)	<0.0050 5.5 26.0 473 24.40			<0.0010 8.8 25.3 463	0.0110 IS 16.9 487
Lead Magnesium Manganese	f (Alk)	<0.0020 33.00 1.470			4.15 <0.0010 30.00 1.880	47.40 <0.0010 32.00 29.800
Molybdenum Nickel Nitrate (as N) Nitrite (as N)	0.04 0.025	<0.010 <0.010 <0.10 <0.10			<0.010 <0.010 0.14 <0.10	<0.010 <0.010 0.46 <0.10
pH (pH units) Phenols Phosphate (as P)	6.5-8.5 0.001	7.3 <0.001 <0.03			7.3 <0.001 <0.01	7.4 <0.001 <0.03
Phosphorus (total) Potassium Silicon	0.03	0.46 8.0 9.90			0.32 9.0 10.20	0.02 8.0 26.70
Silver Sodium Strontium Sulphate Sulphur TDS Temperature (C)	0.0001	<0.0001 60.0 0.624 31.0 9 616 17.0			<0.0001 59.0 0.667 22.0 10 668 17.4	<0.0001 63.0 3.020 27.0 9 680 IS
Thallium Tin Titanium	0.0003	<0.00500 0.050 <0.010			<0.00100 <0.010 <0.010	<0.00100 <0.010 <0.010
Unionized Ammonia Vanadium Zinc	0.02 0.006 0.03	<0.020 <0.0070 <0.010			<0.020 <0.0100 <0.010	0.0020 0.090

LIMOGES LANDFILL - NATION MUNICIPALITY - REPORT OF MONITORING RESULTS

Sheet: 2 Sample Source: SW-7

23-Dec-2000 Date Sampled:

PWQO <u>Parameter</u>

NS Alkalinity (CaCO3) 75% Bkgd

f (pH) Aluminum

Ammonia (as N)

Barium f (Hardness) Beryllium 0.2 Boron

0.0002 Cadmium

Calcium Chloride Chromium

0.0009 Cobalt COD

Conductivity (uS/cm) 0.005

Copper f (Temp) Dissolved Oxygen DOC

Hardness (CaCO3) 0.3

Iron f (Alk) Lead Magnesium

Manganese 0.04 Molybdenum 0.025 Nickel

Nitrate (as N) Nitrite (as N) pH (pH units) 6.5-8.5

0.001 Phenois

Phosphate (as P) Phosphorus (total) 0.03

Potassium Silicon

0.0001 Silver Sodium Strontium

Sulphate Sulphur TDS Temperature (C)
Thallium

0.0003

Tin Titanium 0.02 Unionized Ammonia 0.006 Vanadium 0.03

Zinc